不定积分的计算公式是什么?
1个回答
展开全部
解答如下:
secx=1/cosx
∫secxdx=∫1/cosxdx=∫1/(cosx的平方)dsinx
=∫1/(1-sinx的平方)dsinx
令sinx=t代人可得:
原式=∫1/(1-t^2)dt=1/2∫[1/(1-t)+1/(1+t)]dt
=1/2∫1/(1-t)dt+1/2∫1/(1+t)dt
=-1/2ln(1-t)+1/2ln(1+t)+C
将t=sinx代人可得
原式=[ln(1+sinx)-ln(1-sinx)]/2+C
拓展资料:
必定积分性质:
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
参考资料:百度百科:不定积分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询