均值不等式的成立条件?

 我来答
蔷祀
高粉答主

2023-07-01 · 关注我不会让你失望
知道小有建树答主
回答量:552
采纳率:100%
帮助的人:15.2万
展开全部

三元均值不等式的成立条件:

1.当a+b+c为定值时,三次方根(abc)有最大值为(a+b+c)/3  (当且仅当a=b=c是取等号)。

2.当abc为定值时,(a+b+c)/3 有最小值为三次方根(abc)。

扩展资料

关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式,在这里简要介绍数学归纳法的证明方法:

(注:在此证明的,是对n维形式的均值不等式的证明方法。)

用数学归纳法证明,需要一个辅助结论。

引理:设A≥0,B≥0,则  ,且仅当B=0时取等号。

注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)(或用二项展开公式更为简便)。

参考资料均值不等式_百度百科

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式