均值不等式的成立条件?
1个回答
展开全部
三元均值不等式的成立条件:
1.当a+b+c为定值时,三次方根(abc)有最大值为(a+b+c)/3 (当且仅当a=b=c是取等号)。
2.当abc为定值时,(a+b+c)/3 有最小值为三次方根(abc)。
扩展资料:
关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式,在这里简要介绍数学归纳法的证明方法:
(注:在此证明的,是对n维形式的均值不等式的证明方法。)
用数学归纳法证明,需要一个辅助结论。
注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)(或用二项展开公式更为简便)。
参考资料:均值不等式_百度百科
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询