数列n(2n+1)怎么求前n项和?
3个回答
展开全部
an=2n²+n
所以Sn=2(1²+2²+……+n²)+(1+2+……+n)
=2*n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(4n+5)/6
所以Sn=2(1²+2²+……+n²)+(1+2+……+n)
=2*n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(4n+5)/6
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
n(n+1)(2n+1) = (n^2+n)(2n+1) = 2n^3 +3n^2 +n
Sn = 2*(1^3+2^3+……+n^3) + 3*(1^2+2^2+ ……+n^2) + (1+2+……+n)
= 2*[n(n+1)/2]^2 + 3*n(n+1)(2n+1)/6 + n(n+1)/2
= [n*(n+1)]^2/2 + n(n+1)(2n+1)/2 + n(n+1)/2
提出 n(n+1)/2
= [n(n+1)/2] * [n(n+1) + (2n+1) + 1]
= [n(n+1)/2] * (n^2 +3n+2)
= n * (n+1)^2 * (n+2) /2
Sn = 2*(1^3+2^3+……+n^3) + 3*(1^2+2^2+ ……+n^2) + (1+2+……+n)
= 2*[n(n+1)/2]^2 + 3*n(n+1)(2n+1)/6 + n(n+1)/2
= [n*(n+1)]^2/2 + n(n+1)(2n+1)/2 + n(n+1)/2
提出 n(n+1)/2
= [n(n+1)/2] * [n(n+1) + (2n+1) + 1]
= [n(n+1)/2] * (n^2 +3n+2)
= n * (n+1)^2 * (n+2) /2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询