泰勒公式是什么?
2个回答
展开全部
泰勒公式,是一个用函数在某点的信息描述其附渣斗近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数.
知识剖析
一元泰勒公式
若函数f(x)f(x)f(x)在含有xxx的开区间(a,b)(a,b)(a,b)内有直到n+1n+1n+1阶的导如汪磨数,则当函数在此区间内时,可展开为一个关于(x−x0)(x-x_0)(x−x
0
)的多项式和一个余项的和:f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+f(n)(x0)n!(x−x0)n+f(n+1)(ξ)(n+1)!(x−x0)n+1f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\\f(x)=f(x
0
)+f
′
(x
0
)(x−x
0
)+
2!
f
′′
(x
0
)
(x−x
0
)
2
+⋯+
n!
f
(n)
(x
0
)
(x−x
0
)
n
+
(n+1)!
f
(n+1)
(ξ)
(x−x
0
)
n+1
其中Rn(x)=f(n+1)(ξ)(n+1)!(x−x0)n+1R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}R
n
(x)=
(n+1)!
f
(n+1)
(ξ)
(x−x
0
)
n+1
,ξ\xiξ在xxx和x0x_0x
0
之间的一个数,该余项Rn(x)R_n(x)R
n
(x)为拉格朗日余项。
二元泰勒展开
引人记号:h=x−x0,t=y−y0h=x-x_0,t=y-y_0h=x−x
0
,t=y−y
0
,则二元函数f(x,y)f(x,y)f(x,y)在(x0,y0)(x_0,y_0)(x
0
,y
0
)处的泰勒展开为:
f(x,y)=f(x0,y0)+(h∂∂x+t∂∂y)f(x0,y0)+(h∂∂x+t∂∂y)2f(x0,y0)+⋯+(h∂∂x+t∂∂y)mf(x0,y0)+Rm\陵亩begin{array}{l} f(x,y) = f({x_0},{y_0}) + (h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})f({x_0},{y_0}) + {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^2}f({x_0},{y_0}) + \cdots \\ + {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^m}f({x_0},{y_0}) + {R_m} \end{array}
f(x,y)=f(x
0
,y
0
)+(h
∂x
∂
+t
∂y
∂
)f(x
0
,y
0
)+(h
∂x
∂
+t
∂y
∂
)
2
f(x
0
,y
0
)+⋯
+(h
∂x
∂
+t
∂y
∂
)
m
f(x
0
,y
0
)+R
m
{(h∂∂x+t∂∂y)f(x0,y0)=∂f∂x∣(x0,y0)⋅h+∂f∂y∣(x0,y0)⋅t(h∂∂x+t∂∂y)2f(x0,y0)=∂2f∂x2∣(x0,y0)⋅h2+∂2f∂x∂y∣(x0,y0)⋅ht+∂2f∂y2∣(x0,y0)⋅t2⋯⋯⋯(h∂∂x+t∂∂y)mf(x0,y0)=∑k=0mCmk∂mf∂xk∂ym−k∣(x0,y0)⋅hktm−k\left\{ \begin{array}{l} (h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})f({x_0},{y_0}) = {\left. {\frac{{\partial f}}{{\partial x}}} \right|_{({x_0},{y_0})}} \cdot h + {\left. {\frac{{\partial f}}{{\partial y}}} \right|_{({x_0},{y_0})}} \cdot t\\ {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^2}f({x_0},{y_0}) = {\left. {\frac{{{\partial ^2}f}}{{\partial {x^2}}}} \right|_{({x_0},{y_0})}} \cdot {h^2} + {\left. {\frac{{{\partial ^2}f}}{{\partial x\partial y}}} \right|_{({x_0},{y_0})}} \cdot ht + {\left. {\frac{{{\partial ^2}f}}{{\partial {y^2}}}} \right|_{({x_0},{y_0})}} \cdot {t^2}\\ \cdots \cdots \cdots \\ {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^m}f({x_0},{y_0}) = \sum\limits_{k = 0}^m {C_m^k{{\left. {\frac{{{\partial ^m}f}}{{\partial {x^k}\partial {y^{m - k}}}}} \right|}_{({x_0},{y_0})}} \cdot {h^k}{t^{m - k}}} \end{array} \right.
⎩
⎨
⎧
(h
∂x
∂
+t
∂y
∂
)f(x
0
,y
0
)=
∂x
∂f
∣
∣
(x
0
,y
0
)
⋅h+
∂y
∂f
∣
∣
(x
0
,y
0
)
⋅t
(h
∂x
∂
+t
∂y
∂
)
2
f(x
0
,y
0
)=
∂x
2
∂
2
f
∣
∣
(x
0
,y
0
)
⋅h
2
+
∂x∂y
∂
2
f
∣
∣
(x
0
,y
0
)
⋅ht+
∂y
2
∂
2
f
∣
∣
(x
0
,y
0
)
⋅t
2
⋯⋯⋯
(h
∂x
∂
+t
∂y
∂
)
m
f(x
0
,y
0
)=
k=0
∑
m
C
m
k
∂x
k
∂y
m−k
∂
m
f
∣
∣
(x
0
,y
0
)
⋅h
k
t
m−k
RmR_mR
m
是二元泰勒公式的余项。
由于二元泰勒展开比较复杂,所以在一般的应用之中,只作二阶泰勒展开。
泰勒公式余项的证明
设Rn(x)=f(x)−p(x){R_n}(x) = f(x) - p(x)R
n
(x)=f(x)−p(x)
于是有Rn(x0)=f(x0)−p(x0)=0R_n(x_0)=f(x_0)-p(x_0)=0R
n
(x
0
)=f(x
0
)−p(x
0
)=0
所以有Rn(x0)=Rn′(x0)=Rn′′(x0)=⋯=Rn(n)(x0)=0R_n(x_0)=R'_n(x_0)=R''_n(x_0)=\cdots=R_n^{(n)}(x_0)=0R
n
(x
0
)=R
n
′
(x
0
)=R
n
′′
(x
0
)=⋯=R
n
(n)
(x
0
)=0
根据柯西中值定理可得:
Rn(x)(x−x0)(n+1)=Rn(x)−Rn(x0)(x−x0)(n+1)−0=Rn′(ξ1)(n+1)(ξ1−x0)n\frac{R_n(x)}{(x-x_0)^{(n+1)}}=\frac{R_n(x)-R_n(x_0)}{(x-x_0)^{(n+1)}-0}=\frac{R'_n(\xi_1)}{(n+1)(\xi_1-x_0)^n}
(x−x
0
)
(n+1)
R
n
(x)
=
(x−x
0
)
(n+1)
−0
R
n
(x)−R
n
(x
0
)
=
(n+1)(ξ
1
−x
0
)
n
R
n
′
(ξ
1
)
ξ1\xi_1ξ
1
是在xxx和x0x_0x
0
之间的一个数;
对上式再次使用柯西中值定理,可得:
Rn′(ξ1)(n+1)(ξ1−x0)n=Rn′(ξ1)−Rn′(x0)((n+1)(ξ1−x0)n−0)=Rn′′(ξ2)n(n+1)(ξ2−x0)(n−1)\frac{R'_n(\xi_1)}{(n+1)(\xi_1-x_0)^n}=\frac{R'_n(\xi_1)-R'_n(x_0)}{((n+1)(\xi_1-x_0)^n-0)}=\frac{R''_n(\xi_2)}{n(n+1)(\xi_2-x_0)^{(n-1)}}
(n+1)(ξ
1
−x
0
)
n
R
n
′
(ξ
1
)
=
((n+1)(ξ
1
−x
0
)
n
−0)
R
n
′
(ξ
1
)−R
n
′
(x
0
)
=
n(n+1)(ξ
2
−x
0
)
(n−1)
R
n
′′
(ξ
2
)
ξ2\xi_2ξ
2
是在ξ1\xi_1ξ
1
和x0x_0x
0
之间的一个数
连续使用柯西中值定理n+1n+1n+1次后得到:
Rn(x)(x−x0)(n+1)=Rn(n+1)(ξ)(n+1)!\frac{R_n(x)}{(x-x_0)^{(n+1)}}=\frac{R_n^{(n+1)}(\xi)}{(n+1)!}
(x−x
0
)
(n+1)
R
n
(x)
=
(n+1)!
R
n
(n+1)
(ξ)
,这里, ξ1\xi_1ξ
1
是在xxx和x0x_0x
0
之间的一个数。
由于p(n)(x)=n!an,n!anp^{(n)}(x)=n!a_n,n!a_np
(n)
(x)=n!a
n
,n!a
n
是一个常数,故p(n+1)(x)=0p^{(n+1)}(x)=0p
(n+1)
(x)=0,于是得到:
Rn(n+1)(x)=f(n+1)(x)R_n^{(n+1)}(x)=f^{(n+1)}(x)R
n
(n+1)
(x)=f
(n+1)
(x),综上可得,余项:
Rn(x)=f(n+1)(ξ)(n+1)!(x−x0)n+1R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}R
n
(x)=
(n+1)!
f
(n+1)
(ξ)
(x−x
0
)
n+1
ξ1\xi_1ξ
1
介于xxx和x0x_0x
0
之间,此余项又称为拉格朗日余项。
运用麦克劳林展开可以得到一些常用的泰勒展开式
ex=1+x+x22!+⋯+xnn!+eθx(n+1)!xn+1sinx=x−x33!+x55!−⋯+(−1)nx2n+1(2n+1)!+o(x2n+2)cosx=1−x22!+x44!−x66!+⋯+(−1)nx2n(2n)!+o(x2n)ln(1+x)=x−x22+x33−⋯+(−1)nxn+1n+1+o(xn+1)11−x=1+x+x2+⋯+xn+o(xn)\begin{array}{l} {e^x} = 1 + x + \frac{{{x^2}}}{{2!}} + \cdots + \frac{{{x^n}}}{{n!}} + \frac{{{e^{\theta x}}}}{{(n + 1)!}}{x^{n + 1}}\\ \sin x = x - \frac{{{x^3}}}{{3!}} + \frac{{{x^5}}}{{5!}} - \cdots + {( - 1)^n}\frac{{{x^{2n + 1}}}}{{(2n + 1)!}} + o({x^{2n + 2}})\\ \cos x = 1 - \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}} - \frac{{{x^6}}}{{6!}} + \cdots + {( - 1)^n}\frac{{{x^{2n}}}}{{(2n)!}} + o({x^{2n}})\\ \ln (1 + x) = x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3} - \cdots + {( - 1)^n}\frac{{{x^{n + 1}}}}{{n + 1}} + o({x^{n + 1}})\\ \frac{1}{{1 - x}} = 1 + x + {x^2} + \cdots + {x^n} + o({x^n}) \end{array}
e
x
=1+x+
2!
x
2
+⋯+
n!
x
n
+
(n+1)!
e
θx
x
n+1
sinx=x−
3!
x
3
+
5!
x
5
−⋯+(−1)
n
(2n+1)!
x
2n+1
+o(x
2n+2
)
cosx=1−
2!
x
2
+
4!
x
4
−
6!
x
6
+⋯+(−1)
n
(2n)!
x
2n
+o(x
2n
)
ln(1+x)=x−
2
x
2
+
3
x
3
−⋯+(−1)
n
n+1
x
n+1
+o(x
n+1
)
1−x
1
=1+x+x
2
+⋯+x
n
+o(x
n
)
推导过程
第一步
我们知道f(x)=f(x0)+f′(x0)(x−x0)+αf(x)=f(x_0)+f'(x_0)(x-x_0)+\alphaf(x)=f(x
0
)+f
′
(x
0
)(x−x
0
)+α,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式:p(x)=a0+a1(x−x0)+a2(x−x0)2+⋯+an(x−x0)np(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_n(x-x_0)^np(x)=a
0
+a
1
(x−x
0
)+a
2
(x−x
0
)
2
+⋯+a
n
(x−x
0
)
n
来近似表达函数f(x)f(x)f(x)
第二步
设多项式p(x)p(x)p(x)满足p(x0)=f(x0),p′(x0)=f′(x0)⋯p(n)(x0)=f(n)(x0)p(x_0)=f(x_0),p'(x_0)=f'(x_0)\cdots p^{(n)}(x_0)=f^{(n)}(x_0)p(x
0
)=f(x
0
),p
′
(x
0
)=f
′
(x
0
)⋯p
(n)
(x
0
)=f
(n)
(x
0
)
因此可以得出a0,a1⋯ana_0,a_1\cdots a_na
0
,a
1
⋯a
n
.
第三步
显然p(x0)=a0p(x_0)=a_0p(x
0
)=a
0
,所以a0=f(x0)a_0=f(x_0)a
0
=f(x
0
);p′(x0)=a1p'(x_0)=a_1p
′
(x
0
)=a
1
,所以a1=f′(x0)a_1=f'(x_0)a
1
=f
′
(x
0
);p′′(x0)=2!a2p''(x_0)=2!a_2p
′′
(x
0
)=2!a
2
,所以a2=f′′(x0)2!⋯p(n)(x0)=n!ana_2=\frac{f''(x_0)}{2!}\cdots p^{(n)}(x_0)=n!a_na
2
=
2!
f
′′
(x
0
)
⋯p
(n)
(x
0
)=n!a
n
,所以有an=f(n)(x0)n!a_n=\frac{f^{(n)}(x_0)}{n!}a
n
=
n!
f
(n)
(x
0
)
p(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+f(n)(x0)n!(x−x0)np(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^np(x)=f(x
0
)+f
′
(x
0
)(x−x
0
)+
2!
f
′′
(x
0
)
(x−x
0
)
2
+⋯+
n!
f
(n)
(x
0
)
(x−x
0
)
n
知识剖析
一元泰勒公式
若函数f(x)f(x)f(x)在含有xxx的开区间(a,b)(a,b)(a,b)内有直到n+1n+1n+1阶的导如汪磨数,则当函数在此区间内时,可展开为一个关于(x−x0)(x-x_0)(x−x
0
)的多项式和一个余项的和:f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+f(n)(x0)n!(x−x0)n+f(n+1)(ξ)(n+1)!(x−x0)n+1f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\\f(x)=f(x
0
)+f
′
(x
0
)(x−x
0
)+
2!
f
′′
(x
0
)
(x−x
0
)
2
+⋯+
n!
f
(n)
(x
0
)
(x−x
0
)
n
+
(n+1)!
f
(n+1)
(ξ)
(x−x
0
)
n+1
其中Rn(x)=f(n+1)(ξ)(n+1)!(x−x0)n+1R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}R
n
(x)=
(n+1)!
f
(n+1)
(ξ)
(x−x
0
)
n+1
,ξ\xiξ在xxx和x0x_0x
0
之间的一个数,该余项Rn(x)R_n(x)R
n
(x)为拉格朗日余项。
二元泰勒展开
引人记号:h=x−x0,t=y−y0h=x-x_0,t=y-y_0h=x−x
0
,t=y−y
0
,则二元函数f(x,y)f(x,y)f(x,y)在(x0,y0)(x_0,y_0)(x
0
,y
0
)处的泰勒展开为:
f(x,y)=f(x0,y0)+(h∂∂x+t∂∂y)f(x0,y0)+(h∂∂x+t∂∂y)2f(x0,y0)+⋯+(h∂∂x+t∂∂y)mf(x0,y0)+Rm\陵亩begin{array}{l} f(x,y) = f({x_0},{y_0}) + (h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})f({x_0},{y_0}) + {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^2}f({x_0},{y_0}) + \cdots \\ + {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^m}f({x_0},{y_0}) + {R_m} \end{array}
f(x,y)=f(x
0
,y
0
)+(h
∂x
∂
+t
∂y
∂
)f(x
0
,y
0
)+(h
∂x
∂
+t
∂y
∂
)
2
f(x
0
,y
0
)+⋯
+(h
∂x
∂
+t
∂y
∂
)
m
f(x
0
,y
0
)+R
m
{(h∂∂x+t∂∂y)f(x0,y0)=∂f∂x∣(x0,y0)⋅h+∂f∂y∣(x0,y0)⋅t(h∂∂x+t∂∂y)2f(x0,y0)=∂2f∂x2∣(x0,y0)⋅h2+∂2f∂x∂y∣(x0,y0)⋅ht+∂2f∂y2∣(x0,y0)⋅t2⋯⋯⋯(h∂∂x+t∂∂y)mf(x0,y0)=∑k=0mCmk∂mf∂xk∂ym−k∣(x0,y0)⋅hktm−k\left\{ \begin{array}{l} (h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})f({x_0},{y_0}) = {\left. {\frac{{\partial f}}{{\partial x}}} \right|_{({x_0},{y_0})}} \cdot h + {\left. {\frac{{\partial f}}{{\partial y}}} \right|_{({x_0},{y_0})}} \cdot t\\ {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^2}f({x_0},{y_0}) = {\left. {\frac{{{\partial ^2}f}}{{\partial {x^2}}}} \right|_{({x_0},{y_0})}} \cdot {h^2} + {\left. {\frac{{{\partial ^2}f}}{{\partial x\partial y}}} \right|_{({x_0},{y_0})}} \cdot ht + {\left. {\frac{{{\partial ^2}f}}{{\partial {y^2}}}} \right|_{({x_0},{y_0})}} \cdot {t^2}\\ \cdots \cdots \cdots \\ {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^m}f({x_0},{y_0}) = \sum\limits_{k = 0}^m {C_m^k{{\left. {\frac{{{\partial ^m}f}}{{\partial {x^k}\partial {y^{m - k}}}}} \right|}_{({x_0},{y_0})}} \cdot {h^k}{t^{m - k}}} \end{array} \right.
⎩
⎨
⎧
(h
∂x
∂
+t
∂y
∂
)f(x
0
,y
0
)=
∂x
∂f
∣
∣
(x
0
,y
0
)
⋅h+
∂y
∂f
∣
∣
(x
0
,y
0
)
⋅t
(h
∂x
∂
+t
∂y
∂
)
2
f(x
0
,y
0
)=
∂x
2
∂
2
f
∣
∣
(x
0
,y
0
)
⋅h
2
+
∂x∂y
∂
2
f
∣
∣
(x
0
,y
0
)
⋅ht+
∂y
2
∂
2
f
∣
∣
(x
0
,y
0
)
⋅t
2
⋯⋯⋯
(h
∂x
∂
+t
∂y
∂
)
m
f(x
0
,y
0
)=
k=0
∑
m
C
m
k
∂x
k
∂y
m−k
∂
m
f
∣
∣
(x
0
,y
0
)
⋅h
k
t
m−k
RmR_mR
m
是二元泰勒公式的余项。
由于二元泰勒展开比较复杂,所以在一般的应用之中,只作二阶泰勒展开。
泰勒公式余项的证明
设Rn(x)=f(x)−p(x){R_n}(x) = f(x) - p(x)R
n
(x)=f(x)−p(x)
于是有Rn(x0)=f(x0)−p(x0)=0R_n(x_0)=f(x_0)-p(x_0)=0R
n
(x
0
)=f(x
0
)−p(x
0
)=0
所以有Rn(x0)=Rn′(x0)=Rn′′(x0)=⋯=Rn(n)(x0)=0R_n(x_0)=R'_n(x_0)=R''_n(x_0)=\cdots=R_n^{(n)}(x_0)=0R
n
(x
0
)=R
n
′
(x
0
)=R
n
′′
(x
0
)=⋯=R
n
(n)
(x
0
)=0
根据柯西中值定理可得:
Rn(x)(x−x0)(n+1)=Rn(x)−Rn(x0)(x−x0)(n+1)−0=Rn′(ξ1)(n+1)(ξ1−x0)n\frac{R_n(x)}{(x-x_0)^{(n+1)}}=\frac{R_n(x)-R_n(x_0)}{(x-x_0)^{(n+1)}-0}=\frac{R'_n(\xi_1)}{(n+1)(\xi_1-x_0)^n}
(x−x
0
)
(n+1)
R
n
(x)
=
(x−x
0
)
(n+1)
−0
R
n
(x)−R
n
(x
0
)
=
(n+1)(ξ
1
−x
0
)
n
R
n
′
(ξ
1
)
ξ1\xi_1ξ
1
是在xxx和x0x_0x
0
之间的一个数;
对上式再次使用柯西中值定理,可得:
Rn′(ξ1)(n+1)(ξ1−x0)n=Rn′(ξ1)−Rn′(x0)((n+1)(ξ1−x0)n−0)=Rn′′(ξ2)n(n+1)(ξ2−x0)(n−1)\frac{R'_n(\xi_1)}{(n+1)(\xi_1-x_0)^n}=\frac{R'_n(\xi_1)-R'_n(x_0)}{((n+1)(\xi_1-x_0)^n-0)}=\frac{R''_n(\xi_2)}{n(n+1)(\xi_2-x_0)^{(n-1)}}
(n+1)(ξ
1
−x
0
)
n
R
n
′
(ξ
1
)
=
((n+1)(ξ
1
−x
0
)
n
−0)
R
n
′
(ξ
1
)−R
n
′
(x
0
)
=
n(n+1)(ξ
2
−x
0
)
(n−1)
R
n
′′
(ξ
2
)
ξ2\xi_2ξ
2
是在ξ1\xi_1ξ
1
和x0x_0x
0
之间的一个数
连续使用柯西中值定理n+1n+1n+1次后得到:
Rn(x)(x−x0)(n+1)=Rn(n+1)(ξ)(n+1)!\frac{R_n(x)}{(x-x_0)^{(n+1)}}=\frac{R_n^{(n+1)}(\xi)}{(n+1)!}
(x−x
0
)
(n+1)
R
n
(x)
=
(n+1)!
R
n
(n+1)
(ξ)
,这里, ξ1\xi_1ξ
1
是在xxx和x0x_0x
0
之间的一个数。
由于p(n)(x)=n!an,n!anp^{(n)}(x)=n!a_n,n!a_np
(n)
(x)=n!a
n
,n!a
n
是一个常数,故p(n+1)(x)=0p^{(n+1)}(x)=0p
(n+1)
(x)=0,于是得到:
Rn(n+1)(x)=f(n+1)(x)R_n^{(n+1)}(x)=f^{(n+1)}(x)R
n
(n+1)
(x)=f
(n+1)
(x),综上可得,余项:
Rn(x)=f(n+1)(ξ)(n+1)!(x−x0)n+1R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}R
n
(x)=
(n+1)!
f
(n+1)
(ξ)
(x−x
0
)
n+1
ξ1\xi_1ξ
1
介于xxx和x0x_0x
0
之间,此余项又称为拉格朗日余项。
运用麦克劳林展开可以得到一些常用的泰勒展开式
ex=1+x+x22!+⋯+xnn!+eθx(n+1)!xn+1sinx=x−x33!+x55!−⋯+(−1)nx2n+1(2n+1)!+o(x2n+2)cosx=1−x22!+x44!−x66!+⋯+(−1)nx2n(2n)!+o(x2n)ln(1+x)=x−x22+x33−⋯+(−1)nxn+1n+1+o(xn+1)11−x=1+x+x2+⋯+xn+o(xn)\begin{array}{l} {e^x} = 1 + x + \frac{{{x^2}}}{{2!}} + \cdots + \frac{{{x^n}}}{{n!}} + \frac{{{e^{\theta x}}}}{{(n + 1)!}}{x^{n + 1}}\\ \sin x = x - \frac{{{x^3}}}{{3!}} + \frac{{{x^5}}}{{5!}} - \cdots + {( - 1)^n}\frac{{{x^{2n + 1}}}}{{(2n + 1)!}} + o({x^{2n + 2}})\\ \cos x = 1 - \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}} - \frac{{{x^6}}}{{6!}} + \cdots + {( - 1)^n}\frac{{{x^{2n}}}}{{(2n)!}} + o({x^{2n}})\\ \ln (1 + x) = x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3} - \cdots + {( - 1)^n}\frac{{{x^{n + 1}}}}{{n + 1}} + o({x^{n + 1}})\\ \frac{1}{{1 - x}} = 1 + x + {x^2} + \cdots + {x^n} + o({x^n}) \end{array}
e
x
=1+x+
2!
x
2
+⋯+
n!
x
n
+
(n+1)!
e
θx
x
n+1
sinx=x−
3!
x
3
+
5!
x
5
−⋯+(−1)
n
(2n+1)!
x
2n+1
+o(x
2n+2
)
cosx=1−
2!
x
2
+
4!
x
4
−
6!
x
6
+⋯+(−1)
n
(2n)!
x
2n
+o(x
2n
)
ln(1+x)=x−
2
x
2
+
3
x
3
−⋯+(−1)
n
n+1
x
n+1
+o(x
n+1
)
1−x
1
=1+x+x
2
+⋯+x
n
+o(x
n
)
推导过程
第一步
我们知道f(x)=f(x0)+f′(x0)(x−x0)+αf(x)=f(x_0)+f'(x_0)(x-x_0)+\alphaf(x)=f(x
0
)+f
′
(x
0
)(x−x
0
)+α,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式:p(x)=a0+a1(x−x0)+a2(x−x0)2+⋯+an(x−x0)np(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_n(x-x_0)^np(x)=a
0
+a
1
(x−x
0
)+a
2
(x−x
0
)
2
+⋯+a
n
(x−x
0
)
n
来近似表达函数f(x)f(x)f(x)
第二步
设多项式p(x)p(x)p(x)满足p(x0)=f(x0),p′(x0)=f′(x0)⋯p(n)(x0)=f(n)(x0)p(x_0)=f(x_0),p'(x_0)=f'(x_0)\cdots p^{(n)}(x_0)=f^{(n)}(x_0)p(x
0
)=f(x
0
),p
′
(x
0
)=f
′
(x
0
)⋯p
(n)
(x
0
)=f
(n)
(x
0
)
因此可以得出a0,a1⋯ana_0,a_1\cdots a_na
0
,a
1
⋯a
n
.
第三步
显然p(x0)=a0p(x_0)=a_0p(x
0
)=a
0
,所以a0=f(x0)a_0=f(x_0)a
0
=f(x
0
);p′(x0)=a1p'(x_0)=a_1p
′
(x
0
)=a
1
,所以a1=f′(x0)a_1=f'(x_0)a
1
=f
′
(x
0
);p′′(x0)=2!a2p''(x_0)=2!a_2p
′′
(x
0
)=2!a
2
,所以a2=f′′(x0)2!⋯p(n)(x0)=n!ana_2=\frac{f''(x_0)}{2!}\cdots p^{(n)}(x_0)=n!a_na
2
=
2!
f
′′
(x
0
)
⋯p
(n)
(x
0
)=n!a
n
,所以有an=f(n)(x0)n!a_n=\frac{f^{(n)}(x_0)}{n!}a
n
=
n!
f
(n)
(x
0
)
p(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+f(n)(x0)n!(x−x0)np(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^np(x)=f(x
0
)+f
′
(x
0
)(x−x
0
)+
2!
f
′′
(x
0
)
(x−x
0
)
2
+⋯+
n!
f
(n)
(x
0
)
(x−x
0
)
n
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询