泰勒公式是什么?
2个回答
展开全部
泰勒公式,是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数.
知识剖析
一元泰勒公式
若函数f(x)f(x)f(x)在含有xxx的开区间(a,b)(a,b)(a,b)内有直到n+1n+1n+1阶的导数,则当函数在此区间内时,可展开为一个关于(x−x0)(x-x_0)(x−x
0
)的多项式和一个余项的和:f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+f(n)(x0)n!(x−x0)n+f(n+1)(ξ)(n+1)!(x−x0)n+1f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\\f(x)=f(x
0
)+f
′
(x
0
)(x−x
0
)+
2!
f
′′
(x
0
)
(x−x
0
)
2
+⋯+
n!
f
(n)
(x
0
)
(x−x
0
)
n
+
(n+1)!
f
(n+1)
(ξ)
(x−x
0
)
n+1
其中Rn(x)=f(n+1)(ξ)(n+1)!(x−x0)n+1R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}R
n
(x)=
(n+1)!
f
(n+1)
(ξ)
(x−x
0
)
n+1
,ξ\xiξ在xxx和x0x_0x
0
之间的一个数,该余项Rn(x)R_n(x)R
n
(x)为拉格朗日余项。
二元泰勒展开
引人记号:h=x−x0,t=y−y0h=x-x_0,t=y-y_0h=x−x
0
,t=y−y
0
,则二元函数f(x,y)f(x,y)f(x,y)在(x0,y0)(x_0,y_0)(x
0
,y
0
)处的泰勒展开为:
f(x,y)=f(x0,y0)+(h∂∂x+t∂∂y)f(x0,y0)+(h∂∂x+t∂∂y)2f(x0,y0)+⋯+(h∂∂x+t∂∂y)mf(x0,y0)+Rm\begin{array}{l} f(x,y) = f({x_0},{y_0}) + (h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})f({x_0},{y_0}) + {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^2}f({x_0},{y_0}) + \cdots \\ + {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^m}f({x_0},{y_0}) + {R_m} \end{array}
f(x,y)=f(x
0
,y
0
)+(h
∂x
∂
+t
∂y
∂
)f(x
0
,y
0
)+(h
∂x
∂
+t
∂y
∂
)
2
f(x
0
,y
0
)+⋯
+(h
∂x
∂
+t
∂y
∂
)
m
f(x
0
,y
0
)+R
m
{(h∂∂x+t∂∂y)f(x0,y0)=∂f∂x∣(x0,y0)⋅h+∂f∂y∣(x0,y0)⋅t(h∂∂x+t∂∂y)2f(x0,y0)=∂2f∂x2∣(x0,y0)⋅h2+∂2f∂x∂y∣(x0,y0)⋅ht+∂2f∂y2∣(x0,y0)⋅t2⋯⋯⋯(h∂∂x+t∂∂y)mf(x0,y0)=∑k=0mCmk∂mf∂xk∂ym−k∣(x0,y0)⋅hktm−k\left\{ \begin{array}{l} (h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})f({x_0},{y_0}) = {\left. {\frac{{\partial f}}{{\partial x}}} \right|_{({x_0},{y_0})}} \cdot h + {\left. {\frac{{\partial f}}{{\partial y}}} \right|_{({x_0},{y_0})}} \cdot t\\ {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^2}f({x_0},{y_0}) = {\left. {\frac{{{\partial ^2}f}}{{\partial {x^2}}}} \right|_{({x_0},{y_0})}} \cdot {h^2} + {\left. {\frac{{{\partial ^2}f}}{{\partial x\partial y}}} \right|_{({x_0},{y_0})}} \cdot ht + {\left. {\frac{{{\partial ^2}f}}{{\partial {y^2}}}} \right|_{({x_0},{y_0})}} \cdot {t^2}\\ \cdots \cdots \cdots \\ {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^m}f({x_0},{y_0}) = \sum\limits_{k = 0}^m {C_m^k{{\left. {\frac{{{\partial ^m}f}}{{\partial {x^k}\partial {y^{m - k}}}}} \right|}_{({x_0},{y_0})}} \cdot {h^k}{t^{m - k}}} \end{array} \right.
⎩
⎨
⎧
(h
∂x
∂
+t
∂y
∂
)f(x
0
,y
0
)=
∂x
∂f
∣
∣
(x
0
,y
0
)
⋅h+
∂y
∂f
∣
∣
(x
0
,y
0
)
⋅t
(h
∂x
∂
+t
∂y
∂
)
2
f(x
0
,y
0
)=
∂x
2
∂
2
f
∣
∣
(x
0
,y
0
)
⋅h
2
+
∂x∂y
∂
2
f
∣
∣
(x
0
,y
0
)
⋅ht+
∂y
2
∂
2
f
∣
∣
(x
0
,y
0
)
⋅t
2
⋯⋯⋯
(h
∂x
∂
+t
∂y
∂
)
m
f(x
0
,y
0
)=
k=0
∑
m
C
m
k
∂x
k
∂y
m−k
∂
m
f
∣
∣
(x
0
,y
0
)
⋅h
k
t
m−k
RmR_mR
m
是二元泰勒公式的余项。
由于二元泰勒展开比较复杂,所以在一般的应用之中,只作二阶泰勒展开。
泰勒公式余项的证明
设Rn(x)=f(x)−p(x){R_n}(x) = f(x) - p(x)R
n
(x)=f(x)−p(x)
于是有Rn(x0)=f(x0)−p(x0)=0R_n(x_0)=f(x_0)-p(x_0)=0R
n
(x
0
)=f(x
0
)−p(x
0
)=0
所以有Rn(x0)=Rn′(x0)=Rn′′(x0)=⋯=Rn(n)(x0)=0R_n(x_0)=R'_n(x_0)=R''_n(x_0)=\cdots=R_n^{(n)}(x_0)=0R
n
(x
0
)=R
n
′
(x
0
)=R
n
′′
(x
0
)=⋯=R
n
(n)
(x
0
)=0
根据柯西中值定理可得:
Rn(x)(x−x0)(n+1)=Rn(x)−Rn(x0)(x−x0)(n+1)−0=Rn′(ξ1)(n+1)(ξ1−x0)n\frac{R_n(x)}{(x-x_0)^{(n+1)}}=\frac{R_n(x)-R_n(x_0)}{(x-x_0)^{(n+1)}-0}=\frac{R'_n(\xi_1)}{(n+1)(\xi_1-x_0)^n}
(x−x
0
)
(n+1)
R
n
(x)
=
(x−x
0
)
(n+1)
−0
R
n
(x)−R
n
(x
0
)
=
(n+1)(ξ
1
−x
0
)
n
R
n
′
(ξ
1
)
ξ1\xi_1ξ
1
是在xxx和x0x_0x
0
之间的一个数;
对上式再次使用柯西中值定理,可得:
Rn′(ξ1)(n+1)(ξ1−x0)n=Rn′(ξ1)−Rn′(x0)((n+1)(ξ1−x0)n−0)=Rn′′(ξ2)n(n+1)(ξ2−x0)(n−1)\frac{R'_n(\xi_1)}{(n+1)(\xi_1-x_0)^n}=\frac{R'_n(\xi_1)-R'_n(x_0)}{((n+1)(\xi_1-x_0)^n-0)}=\frac{R''_n(\xi_2)}{n(n+1)(\xi_2-x_0)^{(n-1)}}
(n+1)(ξ
1
−x
0
)
n
R
n
′
(ξ
1
)
=
((n+1)(ξ
1
−x
0
)
n
−0)
R
n
′
(ξ
1
)−R
n
′
(x
0
)
=
n(n+1)(ξ
2
−x
0
)
(n−1)
R
n
′′
(ξ
2
)
ξ2\xi_2ξ
2
是在ξ1\xi_1ξ
1
和x0x_0x
0
之间的一个数
连续使用柯西中值定理n+1n+1n+1次后得到:
Rn(x)(x−x0)(n+1)=Rn(n+1)(ξ)(n+1)!\frac{R_n(x)}{(x-x_0)^{(n+1)}}=\frac{R_n^{(n+1)}(\xi)}{(n+1)!}
(x−x
0
)
(n+1)
R
n
(x)
=
(n+1)!
R
n
(n+1)
(ξ)
,这里, ξ1\xi_1ξ
1
是在xxx和x0x_0x
0
之间的一个数。
由于p(n)(x)=n!an,n!anp^{(n)}(x)=n!a_n,n!a_np
(n)
(x)=n!a
n
,n!a
n
是一个常数,故p(n+1)(x)=0p^{(n+1)}(x)=0p
(n+1)
(x)=0,于是得到:
Rn(n+1)(x)=f(n+1)(x)R_n^{(n+1)}(x)=f^{(n+1)}(x)R
n
(n+1)
(x)=f
(n+1)
(x),综上可得,余项:
Rn(x)=f(n+1)(ξ)(n+1)!(x−x0)n+1R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}R
n
(x)=
(n+1)!
f
(n+1)
(ξ)
(x−x
0
)
n+1
ξ1\xi_1ξ
1
介于xxx和x0x_0x
0
之间,此余项又称为拉格朗日余项。
运用麦克劳林展开可以得到一些常用的泰勒展开式
ex=1+x+x22!+⋯+xnn!+eθx(n+1)!xn+1sinx=x−x33!+x55!−⋯+(−1)nx2n+1(2n+1)!+o(x2n+2)cosx=1−x22!+x44!−x66!+⋯+(−1)nx2n(2n)!+o(x2n)ln(1+x)=x−x22+x33−⋯+(−1)nxn+1n+1+o(xn+1)11−x=1+x+x2+⋯+xn+o(xn)\begin{array}{l} {e^x} = 1 + x + \frac{{{x^2}}}{{2!}} + \cdots + \frac{{{x^n}}}{{n!}} + \frac{{{e^{\theta x}}}}{{(n + 1)!}}{x^{n + 1}}\\ \sin x = x - \frac{{{x^3}}}{{3!}} + \frac{{{x^5}}}{{5!}} - \cdots + {( - 1)^n}\frac{{{x^{2n + 1}}}}{{(2n + 1)!}} + o({x^{2n + 2}})\\ \cos x = 1 - \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}} - \frac{{{x^6}}}{{6!}} + \cdots + {( - 1)^n}\frac{{{x^{2n}}}}{{(2n)!}} + o({x^{2n}})\\ \ln (1 + x) = x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3} - \cdots + {( - 1)^n}\frac{{{x^{n + 1}}}}{{n + 1}} + o({x^{n + 1}})\\ \frac{1}{{1 - x}} = 1 + x + {x^2} + \cdots + {x^n} + o({x^n}) \end{array}
e
x
=1+x+
2!
x
2
+⋯+
n!
x
n
+
(n+1)!
e
θx
x
n+1
sinx=x−
3!
x
3
+
5!
x
5
−⋯+(−1)
n
(2n+1)!
x
2n+1
+o(x
2n+2
)
cosx=1−
2!
x
2
+
4!
x
4
−
6!
x
6
+⋯+(−1)
n
(2n)!
x
2n
+o(x
2n
)
ln(1+x)=x−
2
x
2
+
3
x
3
−⋯+(−1)
n
n+1
x
n+1
+o(x
n+1
)
1−x
1
=1+x+x
2
+⋯+x
n
+o(x
n
)
推导过程
第一步
我们知道f(x)=f(x0)+f′(x0)(x−x0)+αf(x)=f(x_0)+f'(x_0)(x-x_0)+\alphaf(x)=f(x
0
)+f
′
(x
0
)(x−x
0
)+α,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式:p(x)=a0+a1(x−x0)+a2(x−x0)2+⋯+an(x−x0)np(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_n(x-x_0)^np(x)=a
0
+a
1
(x−x
0
)+a
2
(x−x
0
)
2
+⋯+a
n
(x−x
0
)
n
来近似表达函数f(x)f(x)f(x)
第二步
设多项式p(x)p(x)p(x)满足p(x0)=f(x0),p′(x0)=f′(x0)⋯p(n)(x0)=f(n)(x0)p(x_0)=f(x_0),p'(x_0)=f'(x_0)\cdots p^{(n)}(x_0)=f^{(n)}(x_0)p(x
0
)=f(x
0
),p
′
(x
0
)=f
′
(x
0
)⋯p
(n)
(x
0
)=f
(n)
(x
0
)
因此可以得出a0,a1⋯ana_0,a_1\cdots a_na
0
,a
1
⋯a
n
.
第三步
显然p(x0)=a0p(x_0)=a_0p(x
0
)=a
0
,所以a0=f(x0)a_0=f(x_0)a
0
=f(x
0
);p′(x0)=a1p'(x_0)=a_1p
′
(x
0
)=a
1
,所以a1=f′(x0)a_1=f'(x_0)a
1
=f
′
(x
0
);p′′(x0)=2!a2p''(x_0)=2!a_2p
′′
(x
0
)=2!a
2
,所以a2=f′′(x0)2!⋯p(n)(x0)=n!ana_2=\frac{f''(x_0)}{2!}\cdots p^{(n)}(x_0)=n!a_na
2
=
2!
f
′′
(x
0
)
⋯p
(n)
(x
0
)=n!a
n
,所以有an=f(n)(x0)n!a_n=\frac{f^{(n)}(x_0)}{n!}a
n
=
n!
f
(n)
(x
0
)
p(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+f(n)(x0)n!(x−x0)np(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^np(x)=f(x
0
)+f
′
(x
0
)(x−x
0
)+
2!
f
′′
(x
0
)
(x−x
0
)
2
+⋯+
n!
f
(n)
(x
0
)
(x−x
0
)
n
知识剖析
一元泰勒公式
若函数f(x)f(x)f(x)在含有xxx的开区间(a,b)(a,b)(a,b)内有直到n+1n+1n+1阶的导数,则当函数在此区间内时,可展开为一个关于(x−x0)(x-x_0)(x−x
0
)的多项式和一个余项的和:f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+f(n)(x0)n!(x−x0)n+f(n+1)(ξ)(n+1)!(x−x0)n+1f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\\f(x)=f(x
0
)+f
′
(x
0
)(x−x
0
)+
2!
f
′′
(x
0
)
(x−x
0
)
2
+⋯+
n!
f
(n)
(x
0
)
(x−x
0
)
n
+
(n+1)!
f
(n+1)
(ξ)
(x−x
0
)
n+1
其中Rn(x)=f(n+1)(ξ)(n+1)!(x−x0)n+1R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}R
n
(x)=
(n+1)!
f
(n+1)
(ξ)
(x−x
0
)
n+1
,ξ\xiξ在xxx和x0x_0x
0
之间的一个数,该余项Rn(x)R_n(x)R
n
(x)为拉格朗日余项。
二元泰勒展开
引人记号:h=x−x0,t=y−y0h=x-x_0,t=y-y_0h=x−x
0
,t=y−y
0
,则二元函数f(x,y)f(x,y)f(x,y)在(x0,y0)(x_0,y_0)(x
0
,y
0
)处的泰勒展开为:
f(x,y)=f(x0,y0)+(h∂∂x+t∂∂y)f(x0,y0)+(h∂∂x+t∂∂y)2f(x0,y0)+⋯+(h∂∂x+t∂∂y)mf(x0,y0)+Rm\begin{array}{l} f(x,y) = f({x_0},{y_0}) + (h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})f({x_0},{y_0}) + {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^2}f({x_0},{y_0}) + \cdots \\ + {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^m}f({x_0},{y_0}) + {R_m} \end{array}
f(x,y)=f(x
0
,y
0
)+(h
∂x
∂
+t
∂y
∂
)f(x
0
,y
0
)+(h
∂x
∂
+t
∂y
∂
)
2
f(x
0
,y
0
)+⋯
+(h
∂x
∂
+t
∂y
∂
)
m
f(x
0
,y
0
)+R
m
{(h∂∂x+t∂∂y)f(x0,y0)=∂f∂x∣(x0,y0)⋅h+∂f∂y∣(x0,y0)⋅t(h∂∂x+t∂∂y)2f(x0,y0)=∂2f∂x2∣(x0,y0)⋅h2+∂2f∂x∂y∣(x0,y0)⋅ht+∂2f∂y2∣(x0,y0)⋅t2⋯⋯⋯(h∂∂x+t∂∂y)mf(x0,y0)=∑k=0mCmk∂mf∂xk∂ym−k∣(x0,y0)⋅hktm−k\left\{ \begin{array}{l} (h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})f({x_0},{y_0}) = {\left. {\frac{{\partial f}}{{\partial x}}} \right|_{({x_0},{y_0})}} \cdot h + {\left. {\frac{{\partial f}}{{\partial y}}} \right|_{({x_0},{y_0})}} \cdot t\\ {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^2}f({x_0},{y_0}) = {\left. {\frac{{{\partial ^2}f}}{{\partial {x^2}}}} \right|_{({x_0},{y_0})}} \cdot {h^2} + {\left. {\frac{{{\partial ^2}f}}{{\partial x\partial y}}} \right|_{({x_0},{y_0})}} \cdot ht + {\left. {\frac{{{\partial ^2}f}}{{\partial {y^2}}}} \right|_{({x_0},{y_0})}} \cdot {t^2}\\ \cdots \cdots \cdots \\ {(h\frac{\partial }{{\partial x}} + t\frac{\partial }{{\partial y}})^m}f({x_0},{y_0}) = \sum\limits_{k = 0}^m {C_m^k{{\left. {\frac{{{\partial ^m}f}}{{\partial {x^k}\partial {y^{m - k}}}}} \right|}_{({x_0},{y_0})}} \cdot {h^k}{t^{m - k}}} \end{array} \right.
⎩
⎨
⎧
(h
∂x
∂
+t
∂y
∂
)f(x
0
,y
0
)=
∂x
∂f
∣
∣
(x
0
,y
0
)
⋅h+
∂y
∂f
∣
∣
(x
0
,y
0
)
⋅t
(h
∂x
∂
+t
∂y
∂
)
2
f(x
0
,y
0
)=
∂x
2
∂
2
f
∣
∣
(x
0
,y
0
)
⋅h
2
+
∂x∂y
∂
2
f
∣
∣
(x
0
,y
0
)
⋅ht+
∂y
2
∂
2
f
∣
∣
(x
0
,y
0
)
⋅t
2
⋯⋯⋯
(h
∂x
∂
+t
∂y
∂
)
m
f(x
0
,y
0
)=
k=0
∑
m
C
m
k
∂x
k
∂y
m−k
∂
m
f
∣
∣
(x
0
,y
0
)
⋅h
k
t
m−k
RmR_mR
m
是二元泰勒公式的余项。
由于二元泰勒展开比较复杂,所以在一般的应用之中,只作二阶泰勒展开。
泰勒公式余项的证明
设Rn(x)=f(x)−p(x){R_n}(x) = f(x) - p(x)R
n
(x)=f(x)−p(x)
于是有Rn(x0)=f(x0)−p(x0)=0R_n(x_0)=f(x_0)-p(x_0)=0R
n
(x
0
)=f(x
0
)−p(x
0
)=0
所以有Rn(x0)=Rn′(x0)=Rn′′(x0)=⋯=Rn(n)(x0)=0R_n(x_0)=R'_n(x_0)=R''_n(x_0)=\cdots=R_n^{(n)}(x_0)=0R
n
(x
0
)=R
n
′
(x
0
)=R
n
′′
(x
0
)=⋯=R
n
(n)
(x
0
)=0
根据柯西中值定理可得:
Rn(x)(x−x0)(n+1)=Rn(x)−Rn(x0)(x−x0)(n+1)−0=Rn′(ξ1)(n+1)(ξ1−x0)n\frac{R_n(x)}{(x-x_0)^{(n+1)}}=\frac{R_n(x)-R_n(x_0)}{(x-x_0)^{(n+1)}-0}=\frac{R'_n(\xi_1)}{(n+1)(\xi_1-x_0)^n}
(x−x
0
)
(n+1)
R
n
(x)
=
(x−x
0
)
(n+1)
−0
R
n
(x)−R
n
(x
0
)
=
(n+1)(ξ
1
−x
0
)
n
R
n
′
(ξ
1
)
ξ1\xi_1ξ
1
是在xxx和x0x_0x
0
之间的一个数;
对上式再次使用柯西中值定理,可得:
Rn′(ξ1)(n+1)(ξ1−x0)n=Rn′(ξ1)−Rn′(x0)((n+1)(ξ1−x0)n−0)=Rn′′(ξ2)n(n+1)(ξ2−x0)(n−1)\frac{R'_n(\xi_1)}{(n+1)(\xi_1-x_0)^n}=\frac{R'_n(\xi_1)-R'_n(x_0)}{((n+1)(\xi_1-x_0)^n-0)}=\frac{R''_n(\xi_2)}{n(n+1)(\xi_2-x_0)^{(n-1)}}
(n+1)(ξ
1
−x
0
)
n
R
n
′
(ξ
1
)
=
((n+1)(ξ
1
−x
0
)
n
−0)
R
n
′
(ξ
1
)−R
n
′
(x
0
)
=
n(n+1)(ξ
2
−x
0
)
(n−1)
R
n
′′
(ξ
2
)
ξ2\xi_2ξ
2
是在ξ1\xi_1ξ
1
和x0x_0x
0
之间的一个数
连续使用柯西中值定理n+1n+1n+1次后得到:
Rn(x)(x−x0)(n+1)=Rn(n+1)(ξ)(n+1)!\frac{R_n(x)}{(x-x_0)^{(n+1)}}=\frac{R_n^{(n+1)}(\xi)}{(n+1)!}
(x−x
0
)
(n+1)
R
n
(x)
=
(n+1)!
R
n
(n+1)
(ξ)
,这里, ξ1\xi_1ξ
1
是在xxx和x0x_0x
0
之间的一个数。
由于p(n)(x)=n!an,n!anp^{(n)}(x)=n!a_n,n!a_np
(n)
(x)=n!a
n
,n!a
n
是一个常数,故p(n+1)(x)=0p^{(n+1)}(x)=0p
(n+1)
(x)=0,于是得到:
Rn(n+1)(x)=f(n+1)(x)R_n^{(n+1)}(x)=f^{(n+1)}(x)R
n
(n+1)
(x)=f
(n+1)
(x),综上可得,余项:
Rn(x)=f(n+1)(ξ)(n+1)!(x−x0)n+1R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}R
n
(x)=
(n+1)!
f
(n+1)
(ξ)
(x−x
0
)
n+1
ξ1\xi_1ξ
1
介于xxx和x0x_0x
0
之间,此余项又称为拉格朗日余项。
运用麦克劳林展开可以得到一些常用的泰勒展开式
ex=1+x+x22!+⋯+xnn!+eθx(n+1)!xn+1sinx=x−x33!+x55!−⋯+(−1)nx2n+1(2n+1)!+o(x2n+2)cosx=1−x22!+x44!−x66!+⋯+(−1)nx2n(2n)!+o(x2n)ln(1+x)=x−x22+x33−⋯+(−1)nxn+1n+1+o(xn+1)11−x=1+x+x2+⋯+xn+o(xn)\begin{array}{l} {e^x} = 1 + x + \frac{{{x^2}}}{{2!}} + \cdots + \frac{{{x^n}}}{{n!}} + \frac{{{e^{\theta x}}}}{{(n + 1)!}}{x^{n + 1}}\\ \sin x = x - \frac{{{x^3}}}{{3!}} + \frac{{{x^5}}}{{5!}} - \cdots + {( - 1)^n}\frac{{{x^{2n + 1}}}}{{(2n + 1)!}} + o({x^{2n + 2}})\\ \cos x = 1 - \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}} - \frac{{{x^6}}}{{6!}} + \cdots + {( - 1)^n}\frac{{{x^{2n}}}}{{(2n)!}} + o({x^{2n}})\\ \ln (1 + x) = x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3} - \cdots + {( - 1)^n}\frac{{{x^{n + 1}}}}{{n + 1}} + o({x^{n + 1}})\\ \frac{1}{{1 - x}} = 1 + x + {x^2} + \cdots + {x^n} + o({x^n}) \end{array}
e
x
=1+x+
2!
x
2
+⋯+
n!
x
n
+
(n+1)!
e
θx
x
n+1
sinx=x−
3!
x
3
+
5!
x
5
−⋯+(−1)
n
(2n+1)!
x
2n+1
+o(x
2n+2
)
cosx=1−
2!
x
2
+
4!
x
4
−
6!
x
6
+⋯+(−1)
n
(2n)!
x
2n
+o(x
2n
)
ln(1+x)=x−
2
x
2
+
3
x
3
−⋯+(−1)
n
n+1
x
n+1
+o(x
n+1
)
1−x
1
=1+x+x
2
+⋯+x
n
+o(x
n
)
推导过程
第一步
我们知道f(x)=f(x0)+f′(x0)(x−x0)+αf(x)=f(x_0)+f'(x_0)(x-x_0)+\alphaf(x)=f(x
0
)+f
′
(x
0
)(x−x
0
)+α,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式:p(x)=a0+a1(x−x0)+a2(x−x0)2+⋯+an(x−x0)np(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_n(x-x_0)^np(x)=a
0
+a
1
(x−x
0
)+a
2
(x−x
0
)
2
+⋯+a
n
(x−x
0
)
n
来近似表达函数f(x)f(x)f(x)
第二步
设多项式p(x)p(x)p(x)满足p(x0)=f(x0),p′(x0)=f′(x0)⋯p(n)(x0)=f(n)(x0)p(x_0)=f(x_0),p'(x_0)=f'(x_0)\cdots p^{(n)}(x_0)=f^{(n)}(x_0)p(x
0
)=f(x
0
),p
′
(x
0
)=f
′
(x
0
)⋯p
(n)
(x
0
)=f
(n)
(x
0
)
因此可以得出a0,a1⋯ana_0,a_1\cdots a_na
0
,a
1
⋯a
n
.
第三步
显然p(x0)=a0p(x_0)=a_0p(x
0
)=a
0
,所以a0=f(x0)a_0=f(x_0)a
0
=f(x
0
);p′(x0)=a1p'(x_0)=a_1p
′
(x
0
)=a
1
,所以a1=f′(x0)a_1=f'(x_0)a
1
=f
′
(x
0
);p′′(x0)=2!a2p''(x_0)=2!a_2p
′′
(x
0
)=2!a
2
,所以a2=f′′(x0)2!⋯p(n)(x0)=n!ana_2=\frac{f''(x_0)}{2!}\cdots p^{(n)}(x_0)=n!a_na
2
=
2!
f
′′
(x
0
)
⋯p
(n)
(x
0
)=n!a
n
,所以有an=f(n)(x0)n!a_n=\frac{f^{(n)}(x_0)}{n!}a
n
=
n!
f
(n)
(x
0
)
p(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+f(n)(x0)n!(x−x0)np(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^np(x)=f(x
0
)+f
′
(x
0
)(x−x
0
)+
2!
f
′′
(x
0
)
(x−x
0
)
2
+⋯+
n!
f
(n)
(x
0
)
(x−x
0
)
n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询