
等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=( )?
1个回答
展开全部
解题思路:利用等比数列的通项公式即可得出.
∵等比数列{an}满足a2+a4=20,a3+a5=40,
∴a3+a5=q(a2+a4)=20q=40,解得q=2.
故选:C.
,6,a2+a4=a3x1/q+a5x1/q,得q=2
再将a1带入得a1=2
则sn=a1(1-q的n次方)/1-q
带入就行了,1,等比数列{a n}满足a 2+a 4=20,a 3+a 5=40,则公比q=( )
A. [1/2]
B. -[1/2]
C. 2
D. -2
∵等比数列{an}满足a2+a4=20,a3+a5=40,
∴a3+a5=q(a2+a4)=20q=40,解得q=2.
故选:C.
,6,a2+a4=a3x1/q+a5x1/q,得q=2
再将a1带入得a1=2
则sn=a1(1-q的n次方)/1-q
带入就行了,1,等比数列{a n}满足a 2+a 4=20,a 3+a 5=40,则公比q=( )
A. [1/2]
B. -[1/2]
C. 2
D. -2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询