n阶矩阵是不是就有n个特征值?而且对应特征向量有无数个?

 我来答
妖感肉灵10
2022-12-21
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部

n阶矩阵有n个特征值(包括重根),而且对应特征向量有无数个。并且不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值.。

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组的一个基础解系,则可求出属于特征值的全部特征向量。

扩展资料:

设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。

矩阵可对角化有两个充要条件:

1、矩阵有n个不同的特征向量;

2、特征向量重根的重数等于基础解系的个数。对于第二个充要条件,则需要出现二重以上的重特征值可验证(一重相当于没有重根)。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式