设f(0)=0,g'(0)=1,求limf[(2x)-f(-x)]÷g(x)-x+x→0
1个回答
展开全部
设h(x) = f[(2x) - f(-x)]/g(x)。那么
lim x → 0 h(x) = lim x → 0 [f((2x) - f(-x))]/g(x)
由高斯-约旦反演定理,有:
f((2x) - f(-x)) = g(-x)f(x) - g(x)f(-x)
所以:
lim x → 0 h(x) = lim x → 0 [g(-x)f(x) - g(x)f(-x)]/g(x)
考虑到f(0) = 0,g'(0) = 1,那么有:
lim x → 0 h(x) = lim x → 0 [g(-x)f(x) - f(x)]/g(x)
因为f(x)和g(x)在x = 0处都是连续的,所以:
lim x → 0 h(x) = lim x → 0 [g(-x)f(x) - f(x)]/g(x) = (g(-0)f(0) - f(0))/g(0) - x + x
所以:
lim x → 0 h(x) = (g(-0)f(0) - f(0))/g(0) = 0
所以:
lim x → 0 [f[(2x) - f(-x)]/g(x) - x + x] = 0
因此:
lim f[(2x) - f(-x)]/g(x) - x + x = 0
lim x → 0 h(x) = lim x → 0 [f((2x) - f(-x))]/g(x)
由高斯-约旦反演定理,有:
f((2x) - f(-x)) = g(-x)f(x) - g(x)f(-x)
所以:
lim x → 0 h(x) = lim x → 0 [g(-x)f(x) - g(x)f(-x)]/g(x)
考虑到f(0) = 0,g'(0) = 1,那么有:
lim x → 0 h(x) = lim x → 0 [g(-x)f(x) - f(x)]/g(x)
因为f(x)和g(x)在x = 0处都是连续的,所以:
lim x → 0 h(x) = lim x → 0 [g(-x)f(x) - f(x)]/g(x) = (g(-0)f(0) - f(0))/g(0) - x + x
所以:
lim x → 0 h(x) = (g(-0)f(0) - f(0))/g(0) = 0
所以:
lim x → 0 [f[(2x) - f(-x)]/g(x) - x + x] = 0
因此:
lim f[(2x) - f(-x)]/g(x) - x + x = 0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询