圆周率怎么算出来的
1个回答
展开全部
圆形应该是我们生活中十分常见的图形,人们很早之前就注意到,圆的周长与直径之比是个常数,这个常数就是圆周率,现在通常记为π,它是最重要的数学常数之一。那么,圆周率是怎么算出来的呢?下面我们一起来了解一下。
关于π最早的文字记载来自公元前2000年前后的古巴比伦人,它们认为π=3.125,而古埃及人使用π=3.1605。中国古籍里记载有“圆径一而周三”,即π=3,这也是《圣经》旧约中所记载的π值。在古印度耆那教的经典中,可以找到π≈3.1622的说法。这些早期的π值大体都是通过测量圆周长,再测量圆的直径,相除得到的估计值。由于在当时,圆周长无法准确测量出来,想要通过估算法得到精确的π值当然也不可能。
到了公元前3世纪,古希腊大数学家阿基米德第一个给出了计算圆周率π的科学方法:圆内接(或外切)正多边形的周长是可以精确计算的,而随着正多边形边数的增加,会越来越接近圆,那么多边形的周长也会越来越接近圆周长。阿基米德用圆的内接和外切正多边形的周长给出圆周率的下界和上界,正多边形的边数越多,计算出π值的精度越高。阿基米德从正六边形出发,逐次加倍正多边形的边数,利用勾股定理(西方称为毕达哥拉斯定理),就可求得边数加倍后的正多边形的边长。因此,随着边数的不断加倍,阿基米德的方法原则上可以算出任意精度的π值。他本人计算到正96边形,得出223/71<π<22/7,即π值在3.140845与3.142857之间。在西方,后人一直使用阿基米德的方法计算圆周率,差不多使用了19个世纪。
无独有偶,中国三国时期的数学家刘徽,在对《九章算术》作注时,在公元264年给出了类似的算法,并称其为割圆术。所不同的是,刘徽是通过用圆内接正多边形的面积来逐步逼近圆面积来计算圆周率的。约公元480年,南北朝时期的大科学家祖冲之就用割圆术算出了3.1415926<π<3.1415927,这个π值已经准确到7位小数,创造了圆周率计算的世界纪录。
17世纪之前,计算圆周率基本上都是用上述几何方法(割圆术),德国的鲁道夫·范·科伊伦花费大半生时间,计算了正262边形的周长,于1610年将π值计算到小数点后35位。德国人因此将圆周率称为“鲁道夫数”。
关于π值的研究,革命性的变革出现在17世纪发明微积分时,微积分和幂级数展开的结合导致了用无穷级数来计算π值的分析方法,这就抛开了计算繁杂的割圆术。那些微积分的先驱如帕斯卡、牛顿、莱布尼茨等都对π值的计算做出了贡献。1706年,英国数学家梅钦得出了现今以其名字命名的公式,给出了π值的第一个快速算法。梅钦因此把π值计算到了小数点后100位。以后又发现了许多类似的公式,π的计算精度也越来越高。1874年,英国的谢克斯花15年时间将π计算到了小数点后707位,这是人工计算π值的最高纪录,被记录在巴黎发现宫的π大厅。可惜后来发现其结果从528位开始出错了。
电子计算机出现后,人们开始利用它来计算圆周率π的数值,从此,π的数值长度以惊人的速度扩展着:1949年算至小数点后2037位,1973年算至100万位,1983年算至1000万位,1987年算至1亿位,2002年算至1万亿位,至2011年,已算至小数点后10万亿位。
人类对π的认识过程,也从一个侧面反映了数学发展的历程。在人类历史上,从没有对一个数学常数有过如此狂热的数值计算竞赛。不过,有10位小数就足以满足几乎所有的实际计算需要,在日常生活中一般取π=3.1416就足够了。关于π的传奇故事已经成为一段历史,读者们也不必再将时间花在计算或者背诵π的数值上了。
以上就是小编今天的分享,希望可以帮助到大家。
关于π最早的文字记载来自公元前2000年前后的古巴比伦人,它们认为π=3.125,而古埃及人使用π=3.1605。中国古籍里记载有“圆径一而周三”,即π=3,这也是《圣经》旧约中所记载的π值。在古印度耆那教的经典中,可以找到π≈3.1622的说法。这些早期的π值大体都是通过测量圆周长,再测量圆的直径,相除得到的估计值。由于在当时,圆周长无法准确测量出来,想要通过估算法得到精确的π值当然也不可能。
到了公元前3世纪,古希腊大数学家阿基米德第一个给出了计算圆周率π的科学方法:圆内接(或外切)正多边形的周长是可以精确计算的,而随着正多边形边数的增加,会越来越接近圆,那么多边形的周长也会越来越接近圆周长。阿基米德用圆的内接和外切正多边形的周长给出圆周率的下界和上界,正多边形的边数越多,计算出π值的精度越高。阿基米德从正六边形出发,逐次加倍正多边形的边数,利用勾股定理(西方称为毕达哥拉斯定理),就可求得边数加倍后的正多边形的边长。因此,随着边数的不断加倍,阿基米德的方法原则上可以算出任意精度的π值。他本人计算到正96边形,得出223/71<π<22/7,即π值在3.140845与3.142857之间。在西方,后人一直使用阿基米德的方法计算圆周率,差不多使用了19个世纪。
无独有偶,中国三国时期的数学家刘徽,在对《九章算术》作注时,在公元264年给出了类似的算法,并称其为割圆术。所不同的是,刘徽是通过用圆内接正多边形的面积来逐步逼近圆面积来计算圆周率的。约公元480年,南北朝时期的大科学家祖冲之就用割圆术算出了3.1415926<π<3.1415927,这个π值已经准确到7位小数,创造了圆周率计算的世界纪录。
17世纪之前,计算圆周率基本上都是用上述几何方法(割圆术),德国的鲁道夫·范·科伊伦花费大半生时间,计算了正262边形的周长,于1610年将π值计算到小数点后35位。德国人因此将圆周率称为“鲁道夫数”。
关于π值的研究,革命性的变革出现在17世纪发明微积分时,微积分和幂级数展开的结合导致了用无穷级数来计算π值的分析方法,这就抛开了计算繁杂的割圆术。那些微积分的先驱如帕斯卡、牛顿、莱布尼茨等都对π值的计算做出了贡献。1706年,英国数学家梅钦得出了现今以其名字命名的公式,给出了π值的第一个快速算法。梅钦因此把π值计算到了小数点后100位。以后又发现了许多类似的公式,π的计算精度也越来越高。1874年,英国的谢克斯花15年时间将π计算到了小数点后707位,这是人工计算π值的最高纪录,被记录在巴黎发现宫的π大厅。可惜后来发现其结果从528位开始出错了。
电子计算机出现后,人们开始利用它来计算圆周率π的数值,从此,π的数值长度以惊人的速度扩展着:1949年算至小数点后2037位,1973年算至100万位,1983年算至1000万位,1987年算至1亿位,2002年算至1万亿位,至2011年,已算至小数点后10万亿位。
人类对π的认识过程,也从一个侧面反映了数学发展的历程。在人类历史上,从没有对一个数学常数有过如此狂热的数值计算竞赛。不过,有10位小数就足以满足几乎所有的实际计算需要,在日常生活中一般取π=3.1416就足够了。关于π的传奇故事已经成为一段历史,读者们也不必再将时间花在计算或者背诵π的数值上了。
以上就是小编今天的分享,希望可以帮助到大家。
黄小姐
2023-05-24 广告
2023-05-24 广告
ATAGO爱拓成立于1940年,总部位于日本东京,拥有逾80年光学测量仪器的研究开发与生产制造经验,是专业的折光仪生产企业,其主要产品为折光仪及基于折光法原理测量多种物质浓度的衍生浓度计。020-38106065。...
点击进入详情页
本回答由黄小姐提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询