证明方程8X^3-12X^2+6X+1=0在区间(-1,0)内至少有一个根.

 我来答
科创17
2022-08-19 · TA获得超过5930个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:178万
展开全部
令f(X)=8X^3-12X^2+6X+1
f(-1)=-8-12-6+1=-25<0
f(0)=1>0
函数在区间(-1,0)内是连续的
根据中值定理,在区间(-1,0)内至少存在一点使8X^3-12X^2+6X+1=0
所以方程8X^3-12X^2+6X+1=0在区间(-1,0)内至少有一个根
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式