f(x)是对X可求导的函数,求dy/dx y=f(e^x)e^(f(x))怎样求

 我来答
科创17
2022-08-11 · TA获得超过5872个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:170万
展开全部
可以把y看作f(e^x)与e^(f(x))相乘的函数,所以
dy/dx=y'=[f(e^x)]'*e^(f(x))+f(e^x)*[e^(f(x))]'……………………(1)式
其中[f(e^x)]'可看作f(u),u=e^x的复合函数的导数
而[e^(f(x))]'则是e^t,t=f(x)的复合函数的导数
故[f(e^x)]'=f'(e^x)*e^x
[e^(f(x))]'=e^(f(x))*f'(x)
代入(1)式即得
dy/dx=f'(e^x)*e^x*e^(f(x))+f(e^x)*e^(f(x))*f'(x)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式