14.已知直线x+y+3=0与直线x-y+1=0相交,A为交点,求 过点A且倾斜角为 π/3的直线?

 我来答
QHT苏州
2023-01-04 · TA获得超过2557个赞
知道大有可为答主
回答量:2.1万
采纳率:95%
帮助的人:197万
展开全部
因为 x+y+3=0 (1)
x-y+1=0 (2)
(1)+(2)得:2x+4=0
x=-2
把x=-2代入(1)得:
-2+y+3=0
y=-1
所以 直线x+y+3=0与直线x-y+1=0相交的交点为A(-2,-1),
又因为 过点A的直线的倾斜角为π/3,
所以 过点A的直线的斜率是tan(π/3)=√3,
所以 由点斜式可得所求过点A的直线方程是:
y+1=√3(x+2)
化为一般式是:
(√3)x-y+2√3-1=0。
hbc3193034
2023-01-04 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
设所求直线方程为x+y+3+m(x-y+1)=0,
即(1+m)x+(1-m)y+3+m=0,
其斜率(1+m)/(m-1)=tanπ/3=√3,
所以1+m=(m-1)√3,
1+√3=m(√3-1),
m=2+√3,
所求方程为(3+√3)x-(1+√3)y+5+√3=0,
化简得√3x-y+2√3-1=0.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式