利用导数证明不等式有哪些常用方法

 我来答
帐号已注销
2023-01-19 · TA获得超过1140个赞
知道大有可为答主
回答量:6275
采纳率:100%
帮助的人:115万
展开全部

导数在证明不等式中的非常重要,有4种常用方法:

1、利用泰勒公式证明不等式。

2、利用中值定理证明不等式。

3、利用函数的性质证明不等式。

4、利用Jensen不等式证明不等式。

导数公式指的是基本初等函数的导数公式,导数运算法则主要包括四则运算法则、复合函数求导法则(又叫“链式法则”)。

一、什么是导数?

导数就是“平均变化率“△y/△x”,当△x→0时的极限值”。可导函数y=f(x)在点(a,b)处的导数值为f'(a)。

二、基本初等函数的导数公式

高中数学里基本初等函数的导数公式里涉及到的函数类型有:常函数、幂函数、正弦函数、余弦函数、指数函数、对数函数。它们的导数公式如下图所示:

高中数学基本初等函数导数公式

三、导数加、减、乘、除四则运算法则

导数加、减、乘、除四则运算法则公式如下图所示:

1、加减法运算法则

导数的加、减法运算法则公式

2、乘除法运算法则

导数的乘、除法运算法则公式

【注】分母g(x)≠0.

为了便于记忆,我们可以把导数的四则运算法则简化为如下图所示的、比较简洁的四则运算公式。

简化后的导数四则运算法则公式

【注】分母v≠0.

四、复合函数求导公式(“链式法则”)

求一个基本初等函数的导数,只要代入“基本初等函数的导数公式”即可。对于基本初等函数之外的函数如“y=sin(2x)”的导数,则要用到复合函数求导法则(又称“链式法则”)。其内容如下。

(1)若一个函数y=f(g(x)),则它的导数与函数y=f(u),u=g(x)的导数间的关系如下图所示。

复合函数导数公式

(2)根据“复合函数求导公式”可知,“y对x的导数,等于y对u的导数与u对x的导数的乘积”。

【例】求y=sin(2x)的导数。

解:y=sin(2x)可看成y=sinu与u=2x的复合函数。

因为(sinu)'=cosu,(2x)'=2,

所以,[sin(2x)]'=(sinu)'×(2x)'

=cosu×2=2cosu=2cos(2x)。

五、可导函数在一点处的导数值的物理意义和几何意义

(1)物理意义:可导函数在该点处的瞬时变化率。

(2)几何意义:可导函数在该点处的切线斜率值。

【注】一次函数“kx+b(k≠0)”的导数都等于斜率“k”,即(kx+b)'=k。



推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式