设函数f(x)在x=1处可导,且当h趋向于0时,lim[f(1-h)-f(1+h)]/(e^h-1)=2,则f'(1)=?

 我来答
新科技17
2022-11-07 · TA获得超过5904个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75万
展开全部
lim[f(1-h)-f(1+h)]/(e^h-1)=lim[f(1-h)-f(1)+f(1)-f(1+h)]/h=-lim[f(1-h)-f(1)]/(-h)-lim[f(1+h)-f(1)]/h=
-2f'(1)= 2,f'(1)= -1.
这里用到了当h趋向于0时lim((e^h-1)/h=1.进行等价无穷小代换.,9,设函数f(x)在x=1处可导,且当h趋向于0时,lim[f(1-h)-f(1+h)]/(e^h-1)=2,则f'(1)= A.2 B.-2 C.-1 D.1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式