已知f(x)=(x-1)(x-2)(x-3)(x-4)(x-5),则f′(1)=______.
1个回答
展开全部
∵f(x)=(x-1)(x-2)(x-3)(x-4)(x-5),
∴令g(x)=(x-2)(x-3)(x-4)(x-5),
则f(x)=(x-1)g(x)
∴f′(x)=(x-1)′g(x)+(x-1)g′(x)=g(x)+(x-1)g′(x),
则f′(1)=g(1)+(1-1)g′(1)=g(1),
∵g(1)=(1-2)(1-3)(1-4)(1-5)=24,
∴f′(1)=g(1)=24,
故答案为:24.
∴令g(x)=(x-2)(x-3)(x-4)(x-5),
则f(x)=(x-1)g(x)
∴f′(x)=(x-1)′g(x)+(x-1)g′(x)=g(x)+(x-1)g′(x),
则f′(1)=g(1)+(1-1)g′(1)=g(1),
∵g(1)=(1-2)(1-3)(1-4)(1-5)=24,
∴f′(1)=g(1)=24,
故答案为:24.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询