已知△ABC Q在AB上 P在AC上 且AP=PQ=QB 角A=20° AB=AC 求证 AP=BC
1个回答
展开全部
过点B作PQ的平行线,过点P作AB的平行线,两条平行线相交于点D,连接CD.
因为,BDPQ为平行四边形,所以,BD=PQ=AP,PD=QB=AP;
则有:∠DBQ = ∠DPQ = ∠AQP = ∠A = 20°;
因为,AP=PD,且 ∠APD = ∠APQ + ∠DPQ = 160°,
所以,∠PAD=10°,即:点D在∠A的平分线上,
就有:BD=CD,且 ∠DBC = ∠ABC - ∠DBQ = 60°,
所以,△BCD为等边三角形,
就有:BC=BD,且 BD=AP,所以,AP=BC.
因为,BDPQ为平行四边形,所以,BD=PQ=AP,PD=QB=AP;
则有:∠DBQ = ∠DPQ = ∠AQP = ∠A = 20°;
因为,AP=PD,且 ∠APD = ∠APQ + ∠DPQ = 160°,
所以,∠PAD=10°,即:点D在∠A的平分线上,
就有:BD=CD,且 ∠DBC = ∠ABC - ∠DBQ = 60°,
所以,△BCD为等边三角形,
就有:BC=BD,且 BD=AP,所以,AP=BC.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询