三角形相似判定
1个回答
展开全部
(1)平行于三角形一边的直线和其他两边和两边的延长线相交,所构成的三角形与原三角形相似。
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似。
扩展资料:
相似三角形的性质:
1、相似三角形对应角相等,对应边成比例。
2、相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3、相似三角形周长的比等于相似比。
4、相似三角形面积的比等于相似比的平方。
5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询