
已知数列an中,a1=1,an+1=an*2^n,an通项公式为
3个回答
展开全部
即a(n+1)/an=2^n
所以
an/a(n-1)=2^(n-1)
a(n-1)/a(n-2)=2^(n-2)
……
a2/a1=2^1
全都乘起来,左边中间约分
an/a1=2^(n-1)*2^(n-2)*……*2^1
=2^[(n-1)+(n-2)+……+1]
=2^[n(n-1)/2]
a1=1
所以an==2^[n(n-1)/2]
所以
an/a(n-1)=2^(n-1)
a(n-1)/a(n-2)=2^(n-2)
……
a2/a1=2^1
全都乘起来,左边中间约分
an/a1=2^(n-1)*2^(n-2)*……*2^1
=2^[(n-1)+(n-2)+……+1]
=2^[n(n-1)/2]
a1=1
所以an==2^[n(n-1)/2]
展开全部
a(n+1)/a(n)=2^n
令an=2^(0到n-1的和即0+1+2+……+n-1)
证明:
a1=2^0=1,成立
设k为任意正整数
a(k+1)/ak=2^(0+1+2+……+(k-1)+k)/2^(0+1+2+……+(k-1))=2^k
成立,符合题意
令an=2^(0到n-1的和即0+1+2+……+n-1)
证明:
a1=2^0=1,成立
设k为任意正整数
a(k+1)/ak=2^(0+1+2+……+(k-1)+k)/2^(0+1+2+……+(k-1))=2^k
成立,符合题意
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
an*2^n-an=1
an*(2^n-1)=1
所以an通项公式为
an=1*(2^n-1)
an*(2^n-1)=1
所以an通项公式为
an=1*(2^n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询