已知f(x)=sinπx.
(1)设g(x)={f(x),(x≥0);g(x+1)+1,(x<0),}求g(1/4)和g(-1/3);(2)设h(x)=f^2(x)+根号3cosπx+1,求h(x)...
(1)设g(x)={f(x),(x≥0);g(x+1)+1,(x<0),} 求g(1/4)和g(-1/3);
(2)设h(x)=f^2(x)+根号3cosπx+1,求h(x)的最大值及此时x值的集合. 展开
(2)设h(x)=f^2(x)+根号3cosπx+1,求h(x)的最大值及此时x值的集合. 展开
2个回答
2010-12-25 · 知道合伙人教育行家
关注
展开全部
(1)
g(1/4) = f(1/4) = sin(π/4) = 根号2 / 2
g(-1/3) = g(1-1/3) = g(2/3) =f(2/3) = sin(2π/3) = sin(π/3) =根号3 / 2
(2)
h(x) = sin^2(πx) + 根号3cos(πx) +1
=1 - cos^2(πx) + 根号3cos(πx) +1
=-cos^2(πx) + 根号3cos(πx) +2
=-(cosπx-根号3/2)^2 + 11/4 ≤ 11/4
即:h(x)的最大值为11/4
此时:cosπx-根号3/2 = 0
cosπx = 根号3/2
πx = 2kπ ± π/6 【k∈Z】
x = 2k ± 1/6 【k∈Z】
g(1/4) = f(1/4) = sin(π/4) = 根号2 / 2
g(-1/3) = g(1-1/3) = g(2/3) =f(2/3) = sin(2π/3) = sin(π/3) =根号3 / 2
(2)
h(x) = sin^2(πx) + 根号3cos(πx) +1
=1 - cos^2(πx) + 根号3cos(πx) +1
=-cos^2(πx) + 根号3cos(πx) +2
=-(cosπx-根号3/2)^2 + 11/4 ≤ 11/4
即:h(x)的最大值为11/4
此时:cosπx-根号3/2 = 0
cosπx = 根号3/2
πx = 2kπ ± π/6 【k∈Z】
x = 2k ± 1/6 【k∈Z】
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询