什么是不定积分?
答案如下图所示:
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。
不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
扩展资料:
设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。
由定义可知:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
参考资料:百度百科:不定积分
例如计算不定积分∫x²3√1-xdx
令√1-x=t
例如本题不定积分计算过程如下:
再如∫(sinx)^4dx
不定积分概念
不定积分计算方法
解:原式=3∫x²√1-x
x=1-t²
dx=-2tdt
请点击输入图片描述
原式=3∫(1-t²)²t(-2t)dt
=3∫(-2t²+4t^4-2t^6)dt
=-6∫t²dt+12∫t^4dt-6∫t^6dt
=-2t^3+12/5t^5-6/7t^7+c
=-2√(1-x)^3+12/5√(1-x)^5-6/7√(1-x)^7+c。
请点击输入图片描述
∫(1-3x)^6dx
=(-1/3)∫(1-3x)^6d(1-3x)
=-1/3*(1-3x)^7*(1/7)+C
=-1/21*(1-3x)^7+C。
请点击输入图片描述
=∫[(1/2)(1-cos2x]^2dx
=(1/4)∫[1-2cos2x+(cos2x)^2]dx
=(1/4)∫[1-2cos2x+(1/2)(1+cos4x)]dx
=(3/8)∫dx-(1/2)∫cos2xdx+(1/8)∫cos4xdx
=(3/8)∫dx-(1/4)∫cos2xd2x+(1/32)∫cos4xd4x
=(3/8)x-(1/4)sin2x+(1/32)sin4x+C。
请点击输入图片描述
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。
连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
请点击输入图片描述
设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。
请点击输入图片描述
不定积分的主要计算方法有:凑分法、公式法、第一类换元法、第二类换元法、分部积分法和泰勒公式展开近似法等。
需要注意的是不是所有函数都能积分出来,同时各种方法可以用其一也可以多种方法综合应用。