已知椭圆x^2/4+y^2/2=1,过F1的直线l与椭圆C交于A,B两点,若椭圆C上存在点P,使得向量OP=向量OA+向量OB,求
已知椭圆x^2/4+y^2/2=1,过F1的直线l与椭圆C交于A,B两点,若椭圆C上存在点P,使得向量OP=向量OA+向量OB,求直线l,要过程谢谢!...
已知椭圆x^2/4+y^2/2=1,过F1的直线l与椭圆C交于A,B两点,若椭圆C上存在点P,使得向量OP=向量OA+向量OB,求直线l,
要过程谢谢! 展开
要过程谢谢! 展开
展开全部
a²=4,b²=2;c²=a²-b²=2;∴F1(-√2,0)
如果直线l不存在斜率,那么l方程为:x=-√2,A,B坐标分别为:(-√2,1),(-√2,-1)
向量OA=(-√2,1),向量OB=(-√2,-1),向量OP=(-2√2,0)改点不在椭圆上;
∴假设直线l的斜率为k,则方程为y=k(x+√2)与椭圆方程联立消去y有:
(2k²+1)x²+4√2k²x+4k²-4=0;
设A(x1,y1)B(x2,y2)则:x1+x2=-4√2k²/(2k²+1);x1x2=4(k²-1)/(2k²+1);
向量OA=(x1,y1), 向量OB=(x2,y2)
则向量OP=(x1+x2,y1+y2)
∴代入椭圆方程x²/4+y²/2=1有:(x1+x2)²/4 +(y1+y2)²/2=1;
又y1=k(x1+√2),y2=k(x2+√2)代入上式有:(x1+x2)²/4 +k²(x1+x2+2√2)²/2=1;
又x1+x2=-4√2k²/(2k²+1)代入上式有:
[-4√2k²/(2k²+1)]²/4 +k²[-4√2k²/(2k²+1)+2√2]²/2=1
解:k=?
然后求出方程^_^
如果直线l不存在斜率,那么l方程为:x=-√2,A,B坐标分别为:(-√2,1),(-√2,-1)
向量OA=(-√2,1),向量OB=(-√2,-1),向量OP=(-2√2,0)改点不在椭圆上;
∴假设直线l的斜率为k,则方程为y=k(x+√2)与椭圆方程联立消去y有:
(2k²+1)x²+4√2k²x+4k²-4=0;
设A(x1,y1)B(x2,y2)则:x1+x2=-4√2k²/(2k²+1);x1x2=4(k²-1)/(2k²+1);
向量OA=(x1,y1), 向量OB=(x2,y2)
则向量OP=(x1+x2,y1+y2)
∴代入椭圆方程x²/4+y²/2=1有:(x1+x2)²/4 +(y1+y2)²/2=1;
又y1=k(x1+√2),y2=k(x2+√2)代入上式有:(x1+x2)²/4 +k²(x1+x2+2√2)²/2=1;
又x1+x2=-4√2k²/(2k²+1)代入上式有:
[-4√2k²/(2k²+1)]²/4 +k²[-4√2k²/(2k²+1)+2√2]²/2=1
解:k=?
然后求出方程^_^
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询