怎样用错位相减法求数列的和?
1个回答
展开全部
错位相减法万能公式:bn=b1+(n-1)×d。
如果数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和Sn可用此法来求和。
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式,形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)×d;{Cn}为等比数列,通项公式为cn=c1×q^(n-1);对数列An进行求和,首先列出Sn,记为式:
(1)再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2),然后错开一位,将式(1)与式。
(2)作差,对从而简化对数列An的求和,这种数列求和方法叫做错位相减法。
错位相减法举例:
求和Sn=1+3x+5x2+7x3+…+(2n-1)·xn-1(x≠0,n∈N*)。
当x=1时,Sn=1+3+5+…+(2n-1)=n2。
当x≠1时,Sn=1+3x+5x2+7x3+…+(2n-1)xn-1。
∴xSn=x+3x2+5x3+7x4+…+(2n-1)xn。
两式相减得(1-x)Sn=1+2(x+x2+x3+x4+…+xn-1)-(2n-1)xn。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询