日本一位中学生发现一个奇妙的“定理”,请角谷教授证明,而教授无能为力,于是产生角谷猜想。猜想的内容
2个回答
展开全部
是指对於每一个正整数,如果它是奇数,则对它乘3再加1,如果它是偶数,则对它除以2,如此循环,最终都能够得到1。
取一个数字
如n = 6,根据上述公式,得出 6→3→10→5→16→8→4→2→1 。(步骤中最高的数是16,共有7个步骤)
如n = 11,根据上述公式,得出 11→34→17→52→26→13→40→20→10→5→16→8→4→2→1。(步骤中最高的数是40,共有13个步骤)
如n = 27,根据上述公式,得出 : 27→82→41→124→62→31→94→47→142→71→214→107→322→161→484→242→121→364→182→91→274→137→412→206→103→310→155→466→233
→700→350→175→526→263→790→395→1186→593→1780→890→445→1336→668→334→167→502→251→754→377→1132→566→283→850→425→1276
→638→319→958→479→1438→719→2158→1079→3238→1619→4858→2429→7288→3644→1822→911→2734→1367→4102→2051→6154→3077→9232
→4616→2308→1154→577→1732→866→433→1300→650→325→976→488→244→122→61→184→92→46→23→70→35→106→53→160→80→40→20→10
→5→16→8→4→2→1。(步骤中最高的数是9232,共有111个步骤)
考拉兹猜想称,任何正整数,经过上述计算步骤后,最终都会得到 1 。
注意:与角谷猜想相反的是蝴蝶效应,初始值极小误差,会造成巨大的不同;而3x+1恰恰相反,无论多么大的误差,都是会自行的恢复。
取一个数字
如n = 6,根据上述公式,得出 6→3→10→5→16→8→4→2→1 。(步骤中最高的数是16,共有7个步骤)
如n = 11,根据上述公式,得出 11→34→17→52→26→13→40→20→10→5→16→8→4→2→1。(步骤中最高的数是40,共有13个步骤)
如n = 27,根据上述公式,得出 : 27→82→41→124→62→31→94→47→142→71→214→107→322→161→484→242→121→364→182→91→274→137→412→206→103→310→155→466→233
→700→350→175→526→263→790→395→1186→593→1780→890→445→1336→668→334→167→502→251→754→377→1132→566→283→850→425→1276
→638→319→958→479→1438→719→2158→1079→3238→1619→4858→2429→7288→3644→1822→911→2734→1367→4102→2051→6154→3077→9232
→4616→2308→1154→577→1732→866→433→1300→650→325→976→488→244→122→61→184→92→46→23→70→35→106→53→160→80→40→20→10
→5→16→8→4→2→1。(步骤中最高的数是9232,共有111个步骤)
考拉兹猜想称,任何正整数,经过上述计算步骤后,最终都会得到 1 。
注意:与角谷猜想相反的是蝴蝶效应,初始值极小误差,会造成巨大的不同;而3x+1恰恰相反,无论多么大的误差,都是会自行的恢复。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
00000000000时间快到了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询