a+1×q=2+,a1×q4=6,求a1和q
首先,我们可以用方程1解出a:
a = 2 - 1 × q
a = 2 - q
现在,我们将a的值代入方程2:
(2 - q) × q^4 = 6
将q^4展开:q^4 = q × q × q × q
现在方程变为:
(2 - q) × q × q × q × q = 6
简化:
(2 - q) × q^4 = 6
将q^4替换为q × q × q × q:
(2 - q) × q × q × q × q = 6
将所有的q相乘:
(2 - q) × q^4 = 6
(2 - q) × (q × q × q × q) = 6
(2 - q) × q^4 = 6
将q^4替换为(2 - q):
(2 - q) × (2 - q) = 6
展开方程并移项:
4 - 4q + q^2 = 6
将方程转换为标准二次方程形式:
q^2 - 4q - 2 = 0
现在,我们可以使用求根公式解二次方程:
q = [4 ± √(4^2 - 4 × 1 × (-2))] / 2
q = [4 ± √(16 + 8)] / 2
q = [4 ± √24] / 2
q = [4 ± 2√6] / 2
q = 2 ± √6
因此,解为两组值:
q = 2 + √6
q = 2 - √6
当q = 2 + √6:
a = 2 - (2 + √6) = 2 - 2 - √6 = -√6当q = 2 - √6:
a = 2 - (2 - √6) = 2 - 2 + √6 = √6a1 = -√6, q = 2 + √6
a1 = √6, q = 2 - √6
接下来,我们使用q的值来求解a:
所以,方程组的解为:
a5=6,求a1和q。
解:a5=a2q^3,2q^3=6,
q^3=3,q=3^(1/3),
a2=a1q,a1×3^(1/3)=2,
a1=2/3^(1/3)。
a1×q=2+,a1×q^4=6,
q^3=3,
q=3的立方根,即1.4422
a1=2/3的立方根,即1.3867。