14.+设{an}是等差数列,已知a1+a3=8,a2+a5=17(1)求{an}的通项公式;(2?
展开全部
设 {an} 的公差为 d。
因为 {an} 是等差数列,所以 a1 + a3 = a1 + (a1 + 2d) = 8,则:
2a1 + 2d = 8
2a1 = 8 - 2d
a1 = (8 - 2d) / 2
又因为 a2 + a5 = a2 + (a2 + 2d) + (a2 + 4d) = 17,则:
3a2 + 6d = 17
3a2 = 17 - 6d
a2 = (17 - 6d) / 3
将 a1 的表达式代入 a2 的表达式:
a2 = (17 - 6d) / 3 = (17 - 6((8 - 2d) / 2)) / 3 = (17 - 4d) / 3
两式相等,则:
(8 - 2d) / 2 = (17 - 4d) / 3
3(8 - 2d) = 2(17 - 4d)
24 - 6d = 34 - 8d
-2d = -10
d = 5
因此,{an} 的通项公式为:
a_n = a1 + (n - 1)d = (8 - 2d) / 2 + (n - 1)d = (8 - 2d) / 2 + (n - 1)5 = (8 - 10) / 2 + 5(n - 1) = -1 + 5n = 4n - 1。
因为 {an} 是等差数列,所以 a1 + a3 = a1 + (a1 + 2d) = 8,则:
2a1 + 2d = 8
2a1 = 8 - 2d
a1 = (8 - 2d) / 2
又因为 a2 + a5 = a2 + (a2 + 2d) + (a2 + 4d) = 17,则:
3a2 + 6d = 17
3a2 = 17 - 6d
a2 = (17 - 6d) / 3
将 a1 的表达式代入 a2 的表达式:
a2 = (17 - 6d) / 3 = (17 - 6((8 - 2d) / 2)) / 3 = (17 - 4d) / 3
两式相等,则:
(8 - 2d) / 2 = (17 - 4d) / 3
3(8 - 2d) = 2(17 - 4d)
24 - 6d = 34 - 8d
-2d = -10
d = 5
因此,{an} 的通项公式为:
a_n = a1 + (n - 1)d = (8 - 2d) / 2 + (n - 1)d = (8 - 2d) / 2 + (n - 1)5 = (8 - 10) / 2 + 5(n - 1) = -1 + 5n = 4n - 1。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询