函数y=根号下x²+1 +根号下x²-4x+8的最小值是
3个回答
展开全部
由题可以知道:
y=根号下(x²+1) +根号下[(x-2)^2+4] 可以知道函数y连续可导
求导:y1=2x/根号下(x²+1) +2(x-2)/根号下[(x-2)^2+4]
令y1=0 得到:x=0 或 x=2 得到函数y在0和2处取的极值
把x=0 或 x=2 分别代入表达式中就可以得到两个极值1+根号(8)和根号(5)+2
其中较小的1+根号(8)就是最小值咯!
y=根号下(x²+1) +根号下[(x-2)^2+4] 可以知道函数y连续可导
求导:y1=2x/根号下(x²+1) +2(x-2)/根号下[(x-2)^2+4]
令y1=0 得到:x=0 或 x=2 得到函数y在0和2处取的极值
把x=0 或 x=2 分别代入表达式中就可以得到两个极值1+根号(8)和根号(5)+2
其中较小的1+根号(8)就是最小值咯!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-12-26
展开全部
整理可得:
y=√{(x²+1²)+√[(x-2)²+4]}
简写为:
y=√(A+√B)
显然,y的最小值是当A+√B最小时
容易看出,A>0,而且B>0
所以,当A最小时,则A+√B最小
得出:x=0时,y的最小值 ==√(1+2√2)
y=√{(x²+1²)+√[(x-2)²+4]}
简写为:
y=√(A+√B)
显然,y的最小值是当A+√B最小时
容易看出,A>0,而且B>0
所以,当A最小时,则A+√B最小
得出:x=0时,y的最小值 ==√(1+2√2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询