一元二次方程的5种解法

 我来答
小先又哒哒
2023-02-20 · TA获得超过1000个赞
知道大有可为答主
回答量:1.6万
采纳率:99%
帮助的人:242万
展开全部

一元二次方程的5种解法如下:

1、直接开平方法。

对于直接开平方法解一元二次方程时注意一般都有两个解,不要漏解,如果是两个相等的解,也要写成x1=x2=a的形式,其他的都是比较简单。

2、配方法。

在化成直接开平方法求解的时候需要检验方程右边是否是非负的,如果是则利用直接开平方法求解即可,如果不是,原方程就没有实数解。

3、公式法。

公式法是解一元二次方程的根本方法,没有使用条件,因此是必须掌握的。用公式法的注意事项只有一个就是判断“△”的取值范围,只有当△≥0时,一元二次方程才有实数解。

4、因式分解法。

因式分解,在初二下学期的时候重点讲了,之前也有相关的文章,重要性毋庸置疑,在一元二次方程里,因式分解法用的还是挺多的,难度非常容易调节,所以也是考试出题老师非常喜欢的一类题型。

5、图像解法。

一元二次方程ax2+bx+c=0的根的几何意义是二次函数y=ax2+bx+c的图像(为一条抛物线)与x轴交点的x坐标。

当△>0时,则该函数与x轴相交(有两个交点)。

当△=0时,则该函数与x轴相切(有且仅有一个交点)。

当△<0时,则该函数与轴x相离(没有交点)。

一元二次方程的判别式。

利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况。

一元二次方程ax+bx+c=0(a不等于0)的根与根的判别式有如下关系:△=b2-4ac。

①当△>0时,方程有两个不相等的实数根。

②当△=0时,方程有两个相等的实数根。

③当△<0时,方程无实数根,但有2个共轭复根。

泰裤辣hoho
2023-02-21 · 超过160用户采纳过TA的回答
知道小有建树答主
回答量:399
采纳率:100%
帮助的人:5.5万
展开全部

一元二次方程的5种解法有:直接开平方法;配方法;公式法;因式分解法;图像解法。

1、直接开平方法:

依据的是平方根的意义,步骤是:①将方程转化为x=p或(mx+n)=p的形式;②分三种情况降次求解:①当p>0时;②当p=0时;③当p<0时,方程无实数根。需要注意的是:直接开平方法只适用于部分的一元二次方程,它适用的方程能转化为x=p或(mx+n)=p的形式,其中p为常数,当p≥0时,开方时要取正、负。

2、配方法:

把一般形式的一元二次方程ax+bx+c=0(a≥0)左端配成一个含有未知数的完全平方式,右端是一个非负常数,进而可用直接开平方法来求解。一般步骤:移项、二次项系数化成1,配方,开平方根。配方法适用于解所有一元二次方程。

3、公式法:

利用求根公式,直接求解。把一元二次方程的各系数代入求根公式,直接求出方程的解。一般步骤为:(1)把方程化为一般形式;(2)确定a、b、c的值;(3)计算b-4ac的值;(4)当b-4ac≥0时,把a、b、c及b-4ac的值代入一元二次方程的求根公式,求得方程的根;当b-4ac<0时,方程没有实数根。

需要注意的是:公式法是解一元二次方程的一般方法,又叫万能方法,对于任意一个一元二次方程,只要有解,就一定能用求根公式解出来。

4、因式分解法:

先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次。一般步骤为:(1)移项:将方程的右边化为0;(2)化积:把左边因式分解成两个一次式的积;(3)转化:令每个一次式都等于0,转化为两个一元一次方程;(4)求解:解这两个一元一次方程,它们的解就是原方程的解。

需要注意的是:(1)在方程的右边没有化为0前,不能把左边进行因式分解;(2)不是所有的一元二次方程都能用因式分解法求解,即因式分解法只适用部分一元二次方程。

5、图像解法:

先把一元二次方程整理成一般形式:ax²+bx+c=0。令y=ax²+bx+c,再由函数关系式y=ax²+bx+c。给x值(一般取6个特殊值,如:-3,-2,-1,0,1,2,3),算对应的y值,得函数y=ax²+bx+c图像上的6个相应点。上述过程叫列对应值表;再由对应值表在坐标纸上描点画图。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式