如图,AC⊥BC于点C,BC=a,CA=b,AB=c,圆O与直线AB,BC,CA相切,求圆的半径
展开全部
解:设AC、BA、BC与⊙O的切点分别为D、F、E;连接OD、OE;
∵AC、BE是⊙O的切线,
∴∠ODC=∠OEC=∠DCE=90°;
∴四边形ODCE是矩形;
∵OD=OE,
∴四边形ODCE是正方形;
即OE=OD=CD;
设CD=CE=x,则AD=AF=b-x;
由切线长定理,得:BF=BE,
则BA+AF=BC+CE,c+b-x=a+x,即x=12(c+b-a);
故⊙O的半径为=12(c+b-a).
故选B.
∵AC、BE是⊙O的切线,
∴∠ODC=∠OEC=∠DCE=90°;
∴四边形ODCE是矩形;
∵OD=OE,
∴四边形ODCE是正方形;
即OE=OD=CD;
设CD=CE=x,则AD=AF=b-x;
由切线长定理,得:BF=BE,
则BA+AF=BC+CE,c+b-x=a+x,即x=12(c+b-a);
故⊙O的半径为=12(c+b-a).
故选B.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询