lim(2/π.arctanx)^x当x趋近正无穷的时候值是多少,要过程,(^X是指^x次方)
展开全部
lim(x→∞) (2/π*arctanx)^x
=e^lim(x→∞) xln(2/π*arctanx)
=e^lim(x→∞) ln(2/π*arctanx)/(1/x)
用洛必达法则得
=e^lim(x→∞) 1/[(x^2+1)arctanx]/(-1/x^2)
=e^-lim(x→∞) x^2/[(x^2+1)arctanx]
=e^-lim(x→∞) x^2/(x^2*arctanx+arctanx)
=e^-lim(x→∞) 1/[arctanx+(arctanx)/x^2],取得极限
=e^-1/(π/2+0)
=e^(-2/π)
=e^lim(x→∞) xln(2/π*arctanx)
=e^lim(x→∞) ln(2/π*arctanx)/(1/x)
用洛必达法则得
=e^lim(x→∞) 1/[(x^2+1)arctanx]/(-1/x^2)
=e^-lim(x→∞) x^2/[(x^2+1)arctanx]
=e^-lim(x→∞) x^2/(x^2*arctanx+arctanx)
=e^-lim(x→∞) 1/[arctanx+(arctanx)/x^2],取得极限
=e^-1/(π/2+0)
=e^(-2/π)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询