已知α,β∈(3π/4,π),cos(α+β)=4/5,sin(β-π/4)=12/13,求cos(α+π/4)
2个回答
展开全部
cos(α+π/4)=cos[(α+β)+(β-π/4)]=cos(α+β)×cos(β-π/4)-sin(α+β)×sin(β-π/4)
α,β∈(3π/4,π),则α+β∈(3π/2,2π),β-π/4∈(π/2,3π/4),
所以sin(α+β)<0 cos(β-π/4)<0
而cos(α+β)=4/5,sin(β-π/4)=12/13
则sin(α+β)=3/5 cos(β-π/4)=-5/13
cos(α+π/4)=cos[(α+β)+(β-π/4)]=cos(α+β)×cos(β-π/4)-sin(α+β)×sin(β-π/4)
=4/5×(-5/13)-3/5×12/13=-56/65
α,β∈(3π/4,π),则α+β∈(3π/2,2π),β-π/4∈(π/2,3π/4),
所以sin(α+β)<0 cos(β-π/4)<0
而cos(α+β)=4/5,sin(β-π/4)=12/13
则sin(α+β)=3/5 cos(β-π/4)=-5/13
cos(α+π/4)=cos[(α+β)+(β-π/4)]=cos(α+β)×cos(β-π/4)-sin(α+β)×sin(β-π/4)
=4/5×(-5/13)-3/5×12/13=-56/65
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
cos(α+β)=cos((α+π/4)+(β-π/4))=cos(α+π/4)cos(β-π/4)-SIN(α+π/4)SIN(β-π/4)=4/5
sin(α+β)=sin((α+π/4)+(β-π/4))=sin(α+π/4)cos(β-π/4)+cos(α+π/4)SIN(β-π/4)=-3/5
(IV象限)
COS(β-π/4)=-5/13(II象限)
cos(α+π/4)(-5/13)-SIN(α+π/4)(12/13)=4/5
sin(α+π/4)(-5/13)+cos(α+π/4)(12/13)=-3/5
cos(α+π/4)=-56/65
sin(α+β)=sin((α+π/4)+(β-π/4))=sin(α+π/4)cos(β-π/4)+cos(α+π/4)SIN(β-π/4)=-3/5
(IV象限)
COS(β-π/4)=-5/13(II象限)
cos(α+π/4)(-5/13)-SIN(α+π/4)(12/13)=4/5
sin(α+π/4)(-5/13)+cos(α+π/4)(12/13)=-3/5
cos(α+π/4)=-56/65
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询