
展开全部
根据两点间距离公式PA=√(x1-x2)^2+(y1-y2)^2
|PA|^2=(x-a)^2+(y-0)^2=(x-a)^2+(4-2x)^2=5x^2-2(8+a)x+16+a^2
所以,当x=2(8+a)/(2*5)=8+a/5时,PA最小=a^2+16-(8+a)^2/5
y^2=4-2x=-2(x-2),所以顶点坐标为(2,0),焦点坐标为(5/2,0),准线方程为x=3/2,这些信息虽然没用到,但是应该有所反应。
|PA|^2=(x-a)^2+(y-0)^2=(x-a)^2+(4-2x)^2=5x^2-2(8+a)x+16+a^2
所以,当x=2(8+a)/(2*5)=8+a/5时,PA最小=a^2+16-(8+a)^2/5
y^2=4-2x=-2(x-2),所以顶点坐标为(2,0),焦点坐标为(5/2,0),准线方程为x=3/2,这些信息虽然没用到,但是应该有所反应。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询