设f(x)在[a,b]上有连续二阶导数,且f(a)=f(b)=0,试证f(x)在[a,b]上的积分={1/2(x-a)(x-b)*f(x)的二阶导数
设f(x)在[a,b]上有连续二阶导数,且f(a)=f(b)=0,试证f(x)在[a,b]上的积分={1/2(x-a)(x-b)*f(x)的二阶导数}...
设f(x)在[a,b]上有连续二阶导数,且f(a)=f(b)=0,试证f(x)在[a,b]上的积分={1/2(x-a)(x-b)*f(x)的二阶导数}
展开
2010-12-27
展开全部
∫[a,b]{1/2*(x-a)(x-b)f''(x)dx
=∫[a,b]1/2*(x-a)(x-b)df'(x)
=[1/2*(x-a)(x-b)f'(x)]|[a,b]-∫[a,b]1/2*(2x-a-b)f'(x)dx
=-∫[a,b]1/2*(2x-a-b)df(x)
=[-1/2*(2x-a-b)f(x)]|[a,b]+∫[a,b]f(x)dx
=∫[a,b]f(x)dx
所以原题应为:f(x)在[a,b]上的积分={1/2(x-a)(x-b)*f(x)的二阶导数}在[a,b]上的积分
=∫[a,b]1/2*(x-a)(x-b)df'(x)
=[1/2*(x-a)(x-b)f'(x)]|[a,b]-∫[a,b]1/2*(2x-a-b)f'(x)dx
=-∫[a,b]1/2*(2x-a-b)df(x)
=[-1/2*(2x-a-b)f(x)]|[a,b]+∫[a,b]f(x)dx
=∫[a,b]f(x)dx
所以原题应为:f(x)在[a,b]上的积分={1/2(x-a)(x-b)*f(x)的二阶导数}在[a,b]上的积分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询