1个回答
2010-12-28
展开全部
反证法:设a1,a2,a3线性相关,不妨设a1=ka2+ma3(k,m不全为0,不妨设k≠0)
则a1^T*A*a2=(ka2+ma3)^T*A*a2
=ka2^T*A*a2+ma3^T*A*a2
=ka2^T*A*a2≠0(因A正定,且a2≠0,从而a2^T*A*a2>0,又因k≠0)
这与ai^T*A*aj=0(i≠j矛盾)
故a1,a2,a3线性无关
则a1^T*A*a2=(ka2+ma3)^T*A*a2
=ka2^T*A*a2+ma3^T*A*a2
=ka2^T*A*a2≠0(因A正定,且a2≠0,从而a2^T*A*a2>0,又因k≠0)
这与ai^T*A*aj=0(i≠j矛盾)
故a1,a2,a3线性无关
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询