什么是导数如何理解导数的概念

 我来答
月升RL
2023-06-11 · TA获得超过131个赞
知道大有可为答主
回答量:4875
采纳率:100%
帮助的人:234万
展开全部

导数,也叫导函数值,又名微商,是微积分中的重要基础概念,对导数的理解从导数是函数的局部性质、导数的本质、导数的条件性、求导四个方面出发。

一、导数是函数的局部性质:

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

二、导数的本质:

导数是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

三、导数的条件性:

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

四、求导:

寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。

导数的起源:

一、早期导数概念——特殊的形式:

大约在1629年法国数学家费马研究了做曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f'(A)。

二、17世纪——广泛使用的“流数术”:

17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”;他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。

三、19世纪导数——逐渐成熟的理论:

1、1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示dy/dx=lim(oy/ox)。

2、19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式