设三角形ABC的对边分别为a.b.c, cos(A-C)+cosB=2分之3,b平方等于a乘c。求B 怎么作
1个回答
展开全部
因为cosB=cos[pai-(A+C)]= -cos(A+C)=sinAsinC-cosAcosC,
cos(A-C)=cosAcosC+sinAsinC,
而 已知cos(A-C)+cosB=3/2,
所以 2sinAsinC=3/2,
即 sinAsinC=3/4 。
又在三角形ABC中,a/sinA=b/sinB=c/sinC,
由已知 b^2=ac , 可得:(sinB)^2=sinAsinC=3/4。
所以sinB= 根号3/2 或 sinB= -根号3/2。
cos(A-C)=cosAcosC+sinAsinC,
而 已知cos(A-C)+cosB=3/2,
所以 2sinAsinC=3/2,
即 sinAsinC=3/4 。
又在三角形ABC中,a/sinA=b/sinB=c/sinC,
由已知 b^2=ac , 可得:(sinB)^2=sinAsinC=3/4。
所以sinB= 根号3/2 或 sinB= -根号3/2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询