已知如图P是长方形ABCD内一点。求证PA²+PC²=PB²+PD²

中泰宁0GW77a
2010-12-27 · TA获得超过3053个赞
知道小有建树答主
回答量:263
采纳率:0%
帮助的人:130万
展开全部
证明:由P点作AB的平行线交AD于E,交BC于F
∵EF‖AB AB⊥AD
∴EF⊥AD EF⊥BC
设AD=a AB=b AE=m EP=n 则DE=CF=a-m PF=b-n
PA^2=m^2+n^2
PC^2=(a-m)^2+(b-n)^2
∴PA^2+PC^2=m^2+n^2 +(a-m)^2+(b-n)^2
PB^2=m^2+(b-n)^2
PD^2=(a-m)^2+n^2
∴PB^2+PD^2=m^2+n^2 +(a-m)^2+(b-n)^2
∴PA^2+PC^2=PB^2+PD^2
结论成立. 本题就是一道勾股定理的运用,你可以体会一下.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式