已知函数f(x)=2cosxsin(x+Ω/3)-根号3sinxsinx+sinxcosx,求f(x)的单调减区间
展开全部
∵f(x)=sin2x+√3(cosx)^2-√3(sinx)^2=sin2x+√3cos2x=2sin(2x+π/3)
2kπ-π/2<=2x+π/3<=2kπ+π/2==>kπ-5π/12<=x<=kπ+π/12
单调增
2kπ+π/2<=2x+π/3<=2kπ+3π/2==>kπ+π/12<=x<=kπ+7π/12
单调减
2kπ-π/2<=2x+π/3<=2kπ+π/2==>kπ-5π/12<=x<=kπ+π/12
单调增
2kπ+π/2<=2x+π/3<=2kπ+3π/2==>kπ+π/12<=x<=kπ+7π/12
单调减
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式=cosx(sinx+√3cosx)-√3sin*sin+sinxcosx
=2sinxcosx+√3(cosx*cosx-sinxsinx)
=sin2x+√3cos2x
=2sin(2x+π/3)
=2sinxcosx+√3(cosx*cosx-sinxsinx)
=sin2x+√3cos2x
=2sin(2x+π/3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:y=f(x)=(0.5+cosa)sin2x+(0.5cosa+sina+0.5√3)cos2x+0.5cosa+sina-0.5√3
a=Ω/3
1如果Ω=π
则有y'=√5+2√3cos(2x+ψ) <0 tanψ=√3-0.25
2x+ψ∈[2kπ,2kπ+π]
x∈[kπ-0.5ψ,kπ+0.5π-0.5ψ]
2否则同理
a=Ω/3
1如果Ω=π
则有y'=√5+2√3cos(2x+ψ) <0 tanψ=√3-0.25
2x+ψ∈[2kπ,2kπ+π]
x∈[kπ-0.5ψ,kπ+0.5π-0.5ψ]
2否则同理
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询