很长的一段英文求翻译,拒绝软件翻译,大力加分!谢谢。

C3specieswassensitivetohightemperatureandC4specieswassensitivetolowtemperature.Bycomp... C3 species was sensitive to high temperature and C4 species was sensitive to low temperature. By comparison of germination results in all the alternating temperature regimes, we found that high or low temperature, not amplitude acted an important role in the effects of global warming on seed germination. Field experiment showed that more plants germinated in spring, not autumn in Songnen grassland. Germination experiment exhibited that significant differences in germination between diurnal increased and decreased temperature in the spring and autum low ranges 5-10 and 10-15oC, with the former higher. Germination in spring is an adaptive strategy by natural selection. The relationship between germination rate and salinity under different temperatures of C. virgata and D. sanguinalis was curvilinear. We thought there may be some physiological mechanisms, which reduced osmotic stress in the middle and high salinities. This led to the obviously increasing of the germination rate. Further experiments showed that compared with PEG treatment, seeds can germinate in lower water potential induced by NaCl and germinate faster. Seed dry weight decreased with the time. Water content, seed sodium concentration and seed solution sodium concentration of NaCl treatments were significantly higher than the isotonic PEG treatments. Seed sodium concentration and seed solution sodium concentration of germinating and un-germinating seeds in NaCl treatments increased as the water potential decreased. Water content, seed sodium concentration and seed solution sodium concentration increased linearly with time.According to the results, we proposed salinity model:θS = (Sm– S) t, in whichθS is salinity constant, Sm is the maximum salinity above which seed can't germinate, S is the external salinity, and t is germination time. The germination response of seed to salt was divided into four stages. The first stage mainly involved negative osmotic effect. In the second stage, ionic effect and osmotic effect existed together, with ionic effect stonger. In the third stage, no seed germinated in PEG treatment and ionic positive effect was largely higher than osmotic effect. In the fourth stage, ionic effect gradually began to harm the seed.
= =、还机票呢、、
展开
andychewbj
2010-12-30 · TA获得超过5.9万个赞
知道大有可为答主
回答量:3.2万
采纳率:90%
帮助的人:1.2亿
展开全部
C3 species was sensitive to high temperature and C4 species was sensitive to low temperature. By comparison of germination results in all the alternating temperature regimes, we found that high or low temperature, not amplitude acted an important role in the effects of global warming on seed germination. Field experiment showed that more plants germinated in spring, not autumn in Songnen grassland.
C3物种对高温敏感,而C4物种却对低温敏感。将所有在改变温度环境下的萌芽结果进行比较,我们发现全球变暖下扮演影响种子发芽重要角色的是高温或低温,而不是幅度的大小。在松嫩草原的现场试验显示植物发芽更多是在春季而不是秋季。

Germination experiment exhibited that significant differences in germination between diurnal increased and decreased temperature in the spring and autum low ranges 5-10 and 10-15oC, with the former higher. Germination in spring is an adaptive strategy by natural selection. The relationship between germination rate and salinity under different temperatures of C. virgata and D. sanguinalis was curvilinear. We thought there may be some physiological mechanisms, which reduced osmotic stress in the middle and high salinities. This led to the obviously increasing of the germination rate.
萌芽试验显示,在春季与秋季的日昼升温与降温的低限5-10及10-15 °C之间的萌芽差异相当显著,以前者较高。春季的萌芽是自然选择的一种适应性进程。帚状虎尾草和马唐草的萌芽率与不同温度下的盐度之间的关系是曲线型的。我们认为可能存在某些生理学机理,在中及高盐度区降低了渗透应力;这导致萌芽率明显的增加。

Further experiments showed that compared with PEG treatment, seeds can germinate in lower water potential induced by NaCl and germinate faster. Seed dry weight decreased with the time. Water content, seed sodium concentration and seed solution sodium concentration of NaCl treatments were significantly higher than the isotonic PEG treatments. Seed sodium concentration and seed solution sodium concentration of germinating and un-germinating seeds in NaCl treatments increased as the water potential decreased. Water content, seed sodium concentration and seed solution sodium concentration increased linearly with time.
进一步的试验表明,与聚乙二醇水分胁迫对比,种子可以在氯化钠引起的较低水势发芽,并且速度较快。种子的净重随时间降低。水份含量、种子的钠浓度及氯化钠胁迫的种子溶液的钠浓度,都比等渗的聚乙二醇水分胁迫显著的较高。在氯化钠胁迫下正在发芽与没发芽种子的钠浓度及种子溶液的钠浓度,随着水势的降低而升高。水份含量、种子的钠浓度及种子溶液的钠浓度随着时间线性增高。

According to the results, we proposed salinity model: θS = (Sm– S) t, in which θS is salinity constant, Sm is the maximum salinity above which seed can't germinate, S is the external salinity, and t is germination time. The germination response of seed to salt was divided into four stages. The first stage mainly involved negative osmotic effect. In the second stage, ionic effect and osmotic effect existed together, with ionic effect stonger. In the third stage, no seed germinated in PEG treatment and ionic positive effect was largely higher than osmotic effect. In the fourth stage, ionic effect gradually began to harm the seed.
根据结果的分析,我们建议的盐度模式是:θS = (Sm– S) t, 其中θS是盐度的常数,Sm是种子能够发芽的最高限盐度,S是外部的盐度,而t 是发芽时间。种子萌芽对盐分的反应被分为四个阶段;第一阶段主要涉及负面的等渗作用。在第二阶段,离子与等渗效应共存,离子效应较强。第三阶段,在聚乙二醇水分胁迫下没有种子发芽,而离子的正面效应比等渗效应高出许多。在第四阶段,离子效应开始慢慢伤害种子。

注:为了整篇文章的一致性,我也将前段给您翻译如下:

Life-history strategy is the significant research area of plant population ecology. Seed germination is the critical stage of plant life history. Therefore, research on seed germination rule and strategy helps to know and elucidate plant evolution and ecological adaptation traits.
植物种群生态学的重要研究领域是生命史进程。种子的萌芽期是植物生命史的决定性阶段;因此,针对种子的萌芽规律与进程的研究有助于了解和阐明植物的进化及其生态适应性的特质。

Plants in Songnen grassland area were used to test the responses of seed germination to constant temperature and diurnal increased or decreased temperature, the effects of global warming simulated by alternating temperature regimes on seed germination of C3 and C4 species, plant germination pattern and the changes under different constant temperature. The mechanisms of germination responses to NaCl and PEG and the interaction between salt and temperature were also studied. Photosynthetic contribution of cotyledons to seedling growth was evaluated as well.
通过利用中国东北的松嫩草原区域的植物,我们以恒温及日昼的升、降温度来测试种子的萌芽反应,通过模拟全球变暖改变温度环境来观察其对C3及C4物种种子萌芽的影响,植物萌芽的模式,以及在不同的恒温环境下的变化。同时研究的还有萌芽机制对氯化钠和聚乙二醇的反应,以及盐与温度之间所产生的相互作用。另外也对子叶光合作用对幼苗成长的帮助进行评估。

According to the results of constant temperature effects, we proposed the modified thermal time model on the basis of thermal time model and supplemented an equation describing germination rate constant. Germination rate of C3 species was lower than C4 species. According to thermal time model, the average base temperature of C3 species was lower than C4 species, but not significantly. The average thermal time constant of C3 species was higher than C4 species, which approached significant difference.
根据恒温作用的结果,我们推荐修改温时模型,就是在温时模型的基础上补充一个描述萌芽率常数的公式。C3物种的萌芽率要比C4物种较低;根据温时模型显示,C3 物种的平均基准温度比C4 物种的较低但不显著;然而C3物种的平均温时常数要比C4物种较高,而且趋向显著的差异。

In this study, plant seed germination pattern was divided into five categories: quick germination, delayed germination, steady germination, normal germination and delayed-quick germination. Most annual species belonged to quick germination pattern. Perennial C3 species, which distributed to meadow, belonged to delayed-quick germination pattern, normal germination pattern or steady germination pattern. Seed germination pattern of most species changed with temperature, which was an adaptive strategy to environments. Under global warming simulated by alternating temperature regimes conditions, germination traits of C3 and C4 species changed.
本研究中的植物种子萌芽模式被分为五个类别:快速萌芽、延时萌芽、稳态萌芽、正常萌芽和延时-快速萌芽。多数的一年生植物种属于快速发芽模式。分布于草甸的多年生C3物种则属于延时-快速萌芽、正常萌芽或稳态萌芽模式。大多数植物物种的萌芽模式是随着温度而变,这是一种适应环境的进程。随着模拟全球变暖的气温环境条件交替的变化,C3 和C4物种的发芽特征也跟着改变。

【英语牛人团】
郦惜Fz
2010-12-28 · TA获得超过105个赞
知道答主
回答量:78
采纳率:0%
帮助的人:72.7万
展开全部
C3型对高温敏感,C4型对低温敏感。通过对高低温转换带来的效应进行比较,我们发现不论是高温还是低温,都不足以在全球变暖的大环境下影响物种发芽。实验表明,在松嫩草原,更多的植物是在春天而不是秋天发芽。实验显示,在白天升温和降温的过程中,Germination experiment exhibited that significant differences in germination between diurnal increased and decreased temperature in the spring and autum low ranges 5-10 and 10-15oC, with the former higher. 春天发芽,是大自然的选择。帚状虎尾草和血红色马唐在不同的温度下的发芽速度和要求的盐度之间关系呈曲线。我们猜想,也许有某种生理机制能抑制在中高盐度的地方的渗透压力。这能明显提升发芽速度。进一步实验显示,与聚乙二醇实验相比,种子可以在由氯化钠造成的低水压的地方发芽且速度更快。种子随着时间变轻。水、种子纳、Water content, seed sodium concentration and seed solution sodium concentration of NaCl treatments were significantly higher than the isotonic PEG treatments. Seed sodium concentration and seed solution sodium concentration of germinating and un-germinating seeds in NaCl treatments increased as the water potential decreased. Water content, seed sodium concentration and seed solution sodium concentration increased linearly with time. 根据这个结果,我们推断出这个计算盐度的公式:θS = (Sm– S) t,其中θS代表盐分含量,Sm代表种子发芽所允许的最大盐度值,S代表外部盐度,t代表发芽时间。考虑到盐度值,种子的发芽过程可以分解为如下四步。第一步很大程度上是缓慢的渗透作用。第二步,离子反应和渗透作用同时存在,但是离子反应更强。 第三步,在聚乙二醇试验中,所有种子都没有发芽,离子效反应更为强烈。第四步,离子效应慢慢开始破坏种子。

翻译的头大,记号先,有空再来。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
光影私房课
2010-12-28 · TA获得超过435个赞
知道小有建树答主
回答量:325
采纳率:0%
帮助的人:328万
展开全部
C3类别对于高温敏感而C4类别对低温敏感。通过在不同的温度间隔下对比发芽结果,我们发现高温或低温,不足以在全球变暖对种子发芽的影响中起到重要的作用。田间试验显示在松嫩平原上,春季更多植物发芽,而不是秋天。发芽试验显示了春季和秋季日间温度升降对发芽带来的显著差异,范围是5-10度和10-15度,前者更高。春季发芽更加具有自然选择的战略适应性。虎尾草和鸡窝草在发芽率和盐度在不同温度下的关系是非线性的。我们认为可能有一些生理上的机制在中高盐度的地区减少了渗透压。这导致了明显的发芽率的增长。进一步的试验表明与PEG处理相比,种子可以在NaCl降低静水压的情况下萌发而且更快的发芽。种子随时间而减少重量。含水量,种子的钠含量和种子的氯化钠处理的钠浓度要显著的比等渗PEG处理的要高。种子的钠浓度和氯化钠处理的种子溶液的钠浓度,氯化钠处理后未发芽的种子随着静水压的减少而增加。含水率,种子钠浓度和种子溶液的钠浓度随时间是线性增长的。根据此结果我们提出这个模型:θS = (Sm– S)t,其中 θS 是含盐度,Sm是种子无法发芽的最大盐度,S是外界盐度,t是发芽时间。种子对于盐度的发芽反应分为四个阶段,第一个阶段主要夹杂了反渗透的影响。第二个阶段,离子效应和反渗透综合作用,离子作用时间按更长些。第三个阶段,没有种子在PEG处理中发芽,而且离子比渗透影响更大。第四个阶段,离子影响开始逐渐的伤害种子。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
123CcecC123
2010-12-28 · TA获得超过683个赞
知道答主
回答量:79
采纳率:0%
帮助的人:0
展开全部
C3植物对高温较敏感, C4植物对低温较敏感。通过在所有的交替温度状况下发芽结果的比较,我们发现在温室效应对种子萌发的影响中或高或低的温度起到了关键作用,而不是温度震动幅度(amplitude,什么东东)。发芽实验结果显示,在松嫩草地,更多的植物在春天发芽,而不是秋天。发芽率实验显示,在植物发芽率有着显著差别的春天和秋天,其白天的最高气温与最低气温波动分别为5-10℃及10 - 15℃,其中春天的发芽率要高。春季萌发是一个由自然选择的自适应策略。虎尾草和鸡窝草在发芽率和盐度在不同温度下的关系是曲线型的。我们认为,可能会存在一些生理机制,从而减少了中高盐度中植物生长的渗透压。这明显导致了植物发芽率的提高。进一步的实验表明,与用聚乙二醇处理的种子相比,种子可以在由于盐分导致的水分较少的环境中更快地发芽。种子的干重随着时间下降。用氯化钠处理的种子的水分含量,种子和种子钠溶液浓度明显要高于用聚乙二醇处理的种子。种子的钠浓度和氯化钠处理的种子溶液的钠浓度,氯化钠处理后未发芽的种子随着静水压的减少而增加。含水率,种子钠浓度和种子溶液的钠浓度随时间是线性增长的。根据此结果我们提出这个模型:θS = (Sm– S)t,其中 θS 是含盐度,Sm是种子无法发芽的最大盐度,S是外界盐度,t是发芽时间。种子对于盐度的发芽反应分为四个阶段,第一个阶段主要夹杂了反渗透的影响。第二个阶段,离子效应和反渗透综合作用,离子作用时间按更长些。第三个阶段,没有种子在PEG处理中发芽,而且离子比渗透影响更大。第四个阶段,由离子产生的影响逐渐开始对种子造成伤害。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
充星宇6L
2010-12-29 · TA获得超过141个赞
知道答主
回答量:70
采纳率:0%
帮助的人:56.3万
展开全部
C3物种被敏感的高温与C4物种很敏感低的温度。在比较发芽结果温度政权交流,我们发现高或低的温度,而不是振幅扮演一位重要的作用在全球变暖的影响种子萌发。田间试验表明,在春天发芽工厂松嫩草地,而不是秋天。萌发实验展示了这样的显著差异,并能降低日之间萌发了温度在春季和autum低范围,10-15oC 5 - 10,前者更高。在萌发的策略,提出了一种自适应的春天是自然选择的产物。种子萌发率之间的关系在不同温度和盐的数量巨大,是sanguinalis之>曲线。我们认为可能会有一些生理机制,从而降低了渗透胁迫中、高矿化度。这导致了明显增加的情况下,种子萌发率。深入研究表明:相对于钉治疗发芽,种子可引起的水位低盐和发芽,快。减少了种子干重。含水量、种子钠浓度和种子溶液浓度钠盐显著高于其治疗挂钩等的治疗。种子钠浓度和种子溶液浓度un-germinating钠盐种子发芽,增加治疗水势下降。含水量、种子钠浓度和种子解决方案钠浓度均随时间增加根据研究结果,提出了盐度模型:θS =(Sm - S)t,在whichθS是不变的,Sm盐度为最大的盐度之上种子不能发芽的外部的盐度、萌发、t是时间。萌发种子盐反应分为四个阶段。第一阶段主要涉及渗透负面效果。在第二阶段、离子效应和渗透作用在一起,以离子效应存在健康。在第三阶段,没有留下孩子保证超低温钉治疗和离子积极作用在很大程度上是高于渗透效果。在第四阶段,离子效应逐渐开始伤害的种子。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(11)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式