不等式题
已知函数f(x)=ax³-cx,x∈[-1,1](1)若a=4,c=3,求证:对任意x∈[-1,1],恒有|f(x)|≤1;(2)若对任意x∈[-1,1],恒有...
已知函数f(x)=ax³-cx,x∈[-1,1]
(1)若a=4,c=3,求证:对任意x∈[-1,1],恒有|f(x)|≤1;
(2)若对任意x∈[-1,1],恒有|f(x)|≤1,求证:|a|≤4
怎么做,为什么这么做?帮忙解析一下 展开
(1)若a=4,c=3,求证:对任意x∈[-1,1],恒有|f(x)|≤1;
(2)若对任意x∈[-1,1],恒有|f(x)|≤1,求证:|a|≤4
怎么做,为什么这么做?帮忙解析一下 展开
2个回答
展开全部
应该是学了导数再做吧
(1)y=4x^3-3x, 求导数y'=12x^2-3=3(4x^2-1),令y'=0,可得极值点x=-1/2或x=1/2
画表分析可得函数在x=-1/2取极大值,x=1/2取极小值,
同时可得 在定义域[-1,1]上,x=-1/2同时也是最大值点,x=1/2也是最小值点
即此时函数最大f(-1/2)=1, 最小f(1/2)=-1
所以|f(x)|≤1.
(2)也要用导数来做···求极值点 ,考虑极值点与[-1.1]端点的位置关系得最值.你自己试试吧.
(1)y=4x^3-3x, 求导数y'=12x^2-3=3(4x^2-1),令y'=0,可得极值点x=-1/2或x=1/2
画表分析可得函数在x=-1/2取极大值,x=1/2取极小值,
同时可得 在定义域[-1,1]上,x=-1/2同时也是最大值点,x=1/2也是最小值点
即此时函数最大f(-1/2)=1, 最小f(1/2)=-1
所以|f(x)|≤1.
(2)也要用导数来做···求极值点 ,考虑极值点与[-1.1]端点的位置关系得最值.你自己试试吧.
11111
2024-12-27 广告
2024-12-27 广告
作业指导书是一种专门编写的指导性文件,用于完成某一项或同一类型的工作。它是根据设计图纸、制造厂说明书、相关的验评标准、编写人员现场所积累的施工经验以及成熟实用的施工工艺所编写的。定义和作用作业指导书是质量管理体系文件的组成部分,主要用于阐明...
点击进入详情页
本回答由11111提供
展开全部
1.
f(x)=4x^3-3x
f"(x)=12x^2-3
The absolute value of f(-1) f(-0.5) f(0.5) and f(1) are not lager than 1, which are possible extremum points.i.e the absolute value of f(x) is not lager than 1 when x∈[-1,1]∩R
2.
f'(x)=3ax^2-c
Let x be 1, then we get the inequality:
-1<a-c<1
Plainly it is equivalent to a-1<c<a+1.
Suppose a>4,then √(c/3a) is between 0 and 1.
Substitute x=±√(c/3a) to |f(x)|≤1 <=>
|x(ax^2-c)|≤1
=> |x(c/3-c)|=2/3|c*√(c/3a)|≤1
But then (2/3)(a-1)*√((a-1)/3a)<2/3|c*√(c/3a)|≤1
<=>
(a-1)^3/(3a)<4/9
<=>
(a-1)^3<(4/3)a
<=>
(a-1)^2*(1-1/a)<4/3
<=>
(4-1)^2*(1-1/4)<(a-1)^2*(1-1/a)<4/3
A contradiction.
The proof is the same for a<-4.
(Really His Mother Egg Hurt!)
f(x)=4x^3-3x
f"(x)=12x^2-3
The absolute value of f(-1) f(-0.5) f(0.5) and f(1) are not lager than 1, which are possible extremum points.i.e the absolute value of f(x) is not lager than 1 when x∈[-1,1]∩R
2.
f'(x)=3ax^2-c
Let x be 1, then we get the inequality:
-1<a-c<1
Plainly it is equivalent to a-1<c<a+1.
Suppose a>4,then √(c/3a) is between 0 and 1.
Substitute x=±√(c/3a) to |f(x)|≤1 <=>
|x(ax^2-c)|≤1
=> |x(c/3-c)|=2/3|c*√(c/3a)|≤1
But then (2/3)(a-1)*√((a-1)/3a)<2/3|c*√(c/3a)|≤1
<=>
(a-1)^3/(3a)<4/9
<=>
(a-1)^3<(4/3)a
<=>
(a-1)^2*(1-1/a)<4/3
<=>
(4-1)^2*(1-1/4)<(a-1)^2*(1-1/a)<4/3
A contradiction.
The proof is the same for a<-4.
(Really His Mother Egg Hurt!)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询