设四元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的三个解向量,且η1=(2,3,4,5)T;η2

设四元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的三个解向量,且η1=(2,3,4,5)T(此向量是列向量,后同);η2+η3=(1,2,3,4)T,求... 设四元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的三个解向量,且η1=(2,3,4,5)T(此向量是列向量,后同);η2+η3=(1,2,3,4)T,求该方程组的通解。
分析如下:四元非齐次线性方程组的系数矩阵秩为3,那么它对应的齐次线性方程组的解空间是1维的(4-3=1),所以所求的通解形式能够确定了,就是k*a1+a2,其中a1是它对应的齐次线性方程组的一个解,a2是四元非齐次线性方程组的一个特解,因此,求a1,a2即可,求法如下:
η1=(2,3,4,5)T,η2+η3=(1,2,3,4)T都是原方程的解,所以如果原方程为A*x=b,那么A*2η1=2b,A*(η2+η3)=2b,两式相减,得a1=(3,4,5,6)T
而a2即可取η1=(2,3,4,5)T,所以通解为k*(3,4,5,6)T+(2,3,4,5)T

找到答案了,谢谢,1楼即选为满意答案,谢谢支持
展开
帐号已注销
2021-07-22 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:160万
展开全部

通解为齐次方程通解+非齐次方程特解,由于r(A)=3,n-r(A)=1,所以通解为k*(η1+η2+η3)+η1=k*(3,4,5,6)T+(2,3,4,5)T

因为ξ1,ξ2,ξ3为非齐次线性方程组的三个解向量,而且非齐次线性方程组的系数矩阵的秩为3。

根据定义,非齐次线性方程组的表达式为:Ax=b。所以将ξ1,ξ2,ξ3代入Ax=b得到,Aξ1=b,Aξ2=b,Aξ3=b等式两边成立。因为非齐次线性方程组的系数矩阵的秩为3,根据解的结构知,Ax=b的基础解析只有一个。

解法

非齐次线性方程组Ax=b的求解步骤:

(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。

(2)若R(A)=R(B),则进一步将B化为行最简形。非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)

百度网友2620184
2010-12-30 · TA获得超过2091个赞
知道小有建树答主
回答量:456
采纳率:0%
帮助的人:186万
展开全部
没错。
通解为齐次方程通解+非齐次方程特解,由于r(A)=3,n-r(A)=1,所以通解为k*(η1+η2+η3)+η1=k*(3,4,5,6)T+(2,3,4,5)T
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式