设Sn为等比数列An的前n项和,已知A2A4=1,S3=7则S5=
2个回答
展开全部
解:因为a2*a4=1,{an}是由正数组成的等比数列大如漏
所以a3=√(a2*a4)=1
又S3=7
故a1+a2+a3=a2/q+a2+a2*q=1/q+1+q=7
所以q^2-6q+1=0
故q=3+2√2或q=3-2√2
当q=3+2√2时滚烂
a1=a2/q=1/(3+2√2)=3-2√2
所以S5=a1*(1-q^5)/(1-q)=(3-2√2)*[1-(3+2√2)^5]/[1-(3+2√2)]
=123+82√2
当q=3-2√2时
a1=a2/q=1/(3-2√2)=3+2√2
所以S5=a1*(1-q^5)/(1-q)=(3+2√橡羡2)*[1-(3-2√2)^5]/[1-(3-2√2)]
=123-82√2
所以a3=√(a2*a4)=1
又S3=7
故a1+a2+a3=a2/q+a2+a2*q=1/q+1+q=7
所以q^2-6q+1=0
故q=3+2√2或q=3-2√2
当q=3+2√2时滚烂
a1=a2/q=1/(3+2√2)=3-2√2
所以S5=a1*(1-q^5)/(1-q)=(3-2√2)*[1-(3+2√2)^5]/[1-(3+2√2)]
=123+82√2
当q=3-2√2时
a1=a2/q=1/(3-2√2)=3+2√2
所以S5=a1*(1-q^5)/(1-q)=(3+2√橡羡2)*[1-(3-2√2)^5]/[1-(3-2√2)]
=123-82√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询