(根号3-tan10)·根号(1-cos80)的值为 过程很重要~!@
1个回答
展开全部
答案为√2。 过程如下:
原式=(tan60-tan10)*√[(1-cos80)/2 ]*√2
=(sin60/cos60 - sin10/cos10) * sin40 *√2
=(sin60cos10-sin10cos60)/(cos60cos10) * sin40 * √2
=sin(60-10)/(cos60cos10) * sin40 * √2
=sin50sin40/cos60cos10 * √2
=cos40sin40/cos60cos10 * √2
=1/2 sin80/cos60cos10 * √2
=1/2cos10/cos60cos10 * √2
=1/2÷cos60 ×√2
=√2
原式=(tan60-tan10)*√[(1-cos80)/2 ]*√2
=(sin60/cos60 - sin10/cos10) * sin40 *√2
=(sin60cos10-sin10cos60)/(cos60cos10) * sin40 * √2
=sin(60-10)/(cos60cos10) * sin40 * √2
=sin50sin40/cos60cos10 * √2
=cos40sin40/cos60cos10 * √2
=1/2 sin80/cos60cos10 * √2
=1/2cos10/cos60cos10 * √2
=1/2÷cos60 ×√2
=√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询