函数连续但不定积分存在吗?
1个回答
展开全部
定积分存在的必要条件是函数有界定积分存在,定积存在的充分条件是:函数有界而且具有有限个间断点(除无穷间断点外)、函数连续、函数单调有界。
注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
扩展资料:
牛顿-莱布尼兹公式:
定积分与不定积分看起来不起眼,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。
把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么a到b∫f(x)dx=F(b)-F(a)。
积分中值定理:
设f(x)在[a,b]上连续,则至少存在一点ε在[a,b]内使
参考资料来源:百度百科-定积分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询