
求f(x)=(1+sinx)(1+cosx)的最大值和最小值。(要解题过程)
2个回答
展开全部
f(x)=(1+sinx)(1+cosx)=1+(sinx+cosx)+sinxcosx
令t=sinx+cosx =√2sin(x+π/4)
则-√2≤t≤√2
f(x)=1+t+(t^2-1)/2 =1/2(t^2+2t)+1/2
=1/2(t+1)^2
最小值是0(此时t=-1),最大值是√2+3/2(此时t=√2)
令t=sinx+cosx =√2sin(x+π/4)
则-√2≤t≤√2
f(x)=1+t+(t^2-1)/2 =1/2(t^2+2t)+1/2
=1/2(t+1)^2
最小值是0(此时t=-1),最大值是√2+3/2(此时t=√2)

2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询