函数极限不存在有哪些情况?
2个回答
展开全部
函数极限不存在有三种情况:
1、极限为无穷,很好理解,明显与极限存在定义相违。
2、左右极限不相等,例如分段函数。
3、没有确定的函数值,例如lim(sinx)从0到无穷。
注:如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求函数极限。
扩展资料:
函数求极限方法:
1、利用函数连续性:
就是直接将趋向值带入函数自变量中,此时要要求分母不能为0。
2、恒等变形
当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:
第一:因式分解,通过约分使分母不会为零。
第二:若分母出现根号,可以配一个因子使根号去除。
第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
4、通过已知极限
特别是两个重要极限需要牢记。
5、采用洛必达法则求极限
洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。
参考资料来源:百度百科-函数极限
富港检测技术(东莞)有限公司_
2024-06-06 广告
2024-06-06 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
函数在某点的极限不存在可能有以下几种情况:
1. **震荡趋近:** 当 x 趋近于某一点时,函数值来回震荡,没有趋于一个确定的值。
2. **无穷趋近:** 当 x 趋近于某一点时,函数的值趋近于正无穷大或负无穷大。
3. **左右极限不相等:** 在某一点的左极限与右极限不相等,即函数在该点不连续。
4. **发散:** 函数在某一点附近的值趋近于无限大或无限小,而不趋近于任何有限的值。
5. **振荡趋近:** 在某一点附近,函数值在正负之间来回振荡,没有收敛到一个特定的值。
6. **发散到多个值:** 在某一点附近,函数的值同时趋近于多个不同的值,没有确定的极限。
这些情况可能会导致函数在某点的极限不存在,而在不同的情况下,可能需要不同的方法来分析和判断。
1. **震荡趋近:** 当 x 趋近于某一点时,函数值来回震荡,没有趋于一个确定的值。
2. **无穷趋近:** 当 x 趋近于某一点时,函数的值趋近于正无穷大或负无穷大。
3. **左右极限不相等:** 在某一点的左极限与右极限不相等,即函数在该点不连续。
4. **发散:** 函数在某一点附近的值趋近于无限大或无限小,而不趋近于任何有限的值。
5. **振荡趋近:** 在某一点附近,函数值在正负之间来回振荡,没有收敛到一个特定的值。
6. **发散到多个值:** 在某一点附近,函数的值同时趋近于多个不同的值,没有确定的极限。
这些情况可能会导致函数在某点的极限不存在,而在不同的情况下,可能需要不同的方法来分析和判断。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询