对于一元二次方程ax^2+bx+c=0(a≠0),下列说法:(1)若b^2<4ac,则方程没有实数根

对于一元二次方程ax^2+bx+c=0(a≠0),下列说法:(1)若b^2<4ac,则方程没有实数根;(2)若方程有两个相等的实数根,且a=c,则a+b+c=0;(3)若... 对于一元二次方程ax^2+bx+c=0(a≠0),下列说法:(1)若b^2<4ac,则方程没有实数根;(2)若方程有两个相等的实数根,且a=c,则a+b+c=0;(3)若方程ax^2+c=0有两个不相等的实数根,则方程ax^2+bx+c=0必有两个不相等的实数根。其中哪几个是正确的,说明一下理由。谢谢 展开
afuliu
2010-12-30 · TA获得超过568个赞
知道小有建树答主
回答量:139
采纳率:0%
帮助的人:28万
展开全部
(1)正确
b^2<4ac 则b^2-4ac<0 根据韦达定理 方程没有实数根
(2) 错误
若方程有两个相等的实数根
则b^2=4ac 又a=c 则b^2 = 4a^2
b = 2a或b=-2a
前一种情况a+b+c不等于0
(3)正确,方程ax^2+c=0有两个不相等的实数根 则-4ac>0
ax^2+bx+c=0
b^2-4ac>=-4ac>0
所以有两个不相等的实数根
鲁步聪睿9Q
2010-12-30
知道答主
回答量:68
采纳率:0%
帮助的人:39.2万
展开全部
好久没做数学题了,试着做做
二次方程:当b^2-4ac>0 有两个不等实数根 =0 有一个 <0 无
则(1) 对
(2)有b^2-4a^2=0 》》b=2a >>错
(3)有 0^2-4ac>0 >>> 4ac<0 >>> b^2-4ac>0 成立 》》》对
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
找犨
2010-12-30 · 超过12用户采纳过TA的回答
知道答主
回答量:38
采纳率:0%
帮助的人:25.4万
展开全部
1,3对,2错。
2.是因为b^2=4ac,且a=c,则b=±2a,a+b+c=0或4a.
3.由题意知-4ac>0,因为b^2+(-4ac)≥-4ac>0,所以方程ax^2+bx+c=0必有两个不相等的实数根
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式