
如图,在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点. (Ⅰ)求证AC⊥BC1; (Ⅱ)求
2个回答
展开全部
(1)因为 直三棱柱ABC—A1B1C1,
所以 CC1⊥面ABC
所以 BC为BC1在面ABC上的投影
因为 AC^2+BC^2=9+16=25=AB^2
所以 三角形ABC为直角三角形
所以 BC⊥AC
又因为 BC为BC1在面ABC上的投影
所以 BC1⊥AC
所以 CC1⊥面ABC
所以 BC为BC1在面ABC上的投影
因为 AC^2+BC^2=9+16=25=AB^2
所以 三角形ABC为直角三角形
所以 BC⊥AC
又因为 BC为BC1在面ABC上的投影
所以 BC1⊥AC
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询