f(x)=xlnx,求函数f(x)的单调区间和最小值
6个回答
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
1,解:f(x)=xlnx的定义域为(0,+无穷),
由f(x)=xlnx, 则:
f'(x)=x'lnx+x(lnx)'=lnx+x*(1/x)=lnx+1。
令 f'(x)=0,即:lnx+1=0,
lnx=-1, x=1/e。
当x属于(0,1/e)时,f‘(x)=lnx+1<0,
所以 f(x)在区间(0,1/e)递减;
当x属于[1/e,+无穷)时,f‘(x)=lnx+1 >0,
所以f(x)在区间[1/e,+无穷)递增。
所以当x=1/e时,函数f(x)有最小值 -1/e。
2,
由f(x)=xlnx, 则:
f'(x)=x'lnx+x(lnx)'=lnx+x*(1/x)=lnx+1。
令 f'(x)=0,即:lnx+1=0,
lnx=-1, x=1/e。
当x属于(0,1/e)时,f‘(x)=lnx+1<0,
所以 f(x)在区间(0,1/e)递减;
当x属于[1/e,+无穷)时,f‘(x)=lnx+1 >0,
所以f(x)在区间[1/e,+无穷)递增。
所以当x=1/e时,函数f(x)有最小值 -1/e。
2,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f'(x)=lnx+1
当0<x<1/e时,f'(x)<0,所以f(x)在(0,1/e)上单减
当x>1/e时,f‘(x)>0,所以f(x)在(1/e,+∞)单增
所以,当 x=1/e时,取得最小值f(1/e)=-1/e
考查函数g(x)=x^x (x>0)
显然 g(x)=e^(xlnx),而xlnx由上面结论在x=1/e处取最小值,所以g(x)在x=1/e处也取最小值
g(1/e)=(1/e)^(1/e)
当0<x<1/e时,f'(x)<0,所以f(x)在(0,1/e)上单减
当x>1/e时,f‘(x)>0,所以f(x)在(1/e,+∞)单增
所以,当 x=1/e时,取得最小值f(1/e)=-1/e
考查函数g(x)=x^x (x>0)
显然 g(x)=e^(xlnx),而xlnx由上面结论在x=1/e处取最小值,所以g(x)在x=1/e处也取最小值
g(1/e)=(1/e)^(1/e)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f'(x)=lnx+1
令f'(x)=0
lnx+1=0
lnx=-1
x=1/e
列表(x>0)
(0,1/e) 1/e (1/e,+∞)
y' - 0 +
y 减 极小 增
极小值为f(1/e)=(1/e)ln(1/e)
=-1/e
同时为最小值
那个。。求证b^b> =(1/e)^(1/e)
这个没法证,原题是什么
令f'(x)=0
lnx+1=0
lnx=-1
x=1/e
列表(x>0)
(0,1/e) 1/e (1/e,+∞)
y' - 0 +
y 减 极小 增
极小值为f(1/e)=(1/e)ln(1/e)
=-1/e
同时为最小值
那个。。求证b^b> =(1/e)^(1/e)
这个没法证,原题是什么
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你们有学过导数吗,求导就好解题如下
(1)f'=lnx+1
令f'=0
解得 x=1/e
即 当x<1/e时,f'<0 单调递减
当x>1/e时 f'>0 单调递增
故 当x=1/e时,有最小值f(x)=-1/e
(2)先构造一个函数y=x^x
两边取对数得 lny=xlnx
两边求导 y'/y=lnx+1 得y'=x^x(lnx+1)
令y'=0 又x>0 故lnx+1=0
解得x=1/e
之后的解题步骤同(1)
(1)f'=lnx+1
令f'=0
解得 x=1/e
即 当x<1/e时,f'<0 单调递减
当x>1/e时 f'>0 单调递增
故 当x=1/e时,有最小值f(x)=-1/e
(2)先构造一个函数y=x^x
两边取对数得 lny=xlnx
两边求导 y'/y=lnx+1 得y'=x^x(lnx+1)
令y'=0 又x>0 故lnx+1=0
解得x=1/e
之后的解题步骤同(1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
求导,f‘=lnx+1。f'=0,x=e. 当(0,e),f'<0,递减。x=e,最小。x在(e,无穷),递增。最小值就是f=e。
设g(x)=x^x (x>0)
g(x)=e^(xlnx),因为x=1/e处取最小值,所以g(x)在x=1/e处也取最小值
g(1/e)=(1/e)^(1/e)
设g(x)=x^x (x>0)
g(x)=e^(xlnx),因为x=1/e处取最小值,所以g(x)在x=1/e处也取最小值
g(1/e)=(1/e)^(1/e)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询