点M,N在圆x^2+y^2+kx+2y+4=0上,且点M,N至于直线x-y+1=0对称,求该圆的半径。

长为2a的线段AB的两个端点A和B分别在x轴;和y轴上滑动,求线段AB的中点的轨迹方程。... 长为2a的线段AB的两个端点A和B分别在x轴;和y轴上滑动,求线段AB的中点的轨迹方程。 展开
西湖头
2011-01-01
知道答主
回答量:26
采纳率:0%
帮助的人:13.3万
展开全部
第一题思路如下:由题意可知圆心为(-2,-1)(M,N关于直线对称,又在圆上,说明直线是圆的对称轴,即直线过圆心)。则有(x+2)^2+(y+1)^2=r^2(r为自己设的未知数,代表半径)又x^2+y^2+kx+2y+4=0,则有,r=1

第二题,思路如下:设AB的中点为(x,y),则有A(2x,0),B(0,2y).用求距离的方法可知(2y-0)^2+(0-2x)^2=(2a)^2,则有轨迹方程:x^2+y^2=a^2,定义域为(0<=x<=a,0<=y<=a).
好久没做这种题目了 ,如果有什么错误,可以给我回复,谢谢。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式