求导后是根号下(1-x^2),它的原函数是什么?
(1/2)*[x√(1-x²)+arcsinx]+C。
解题方法如下:
设x=sint,√(1-x²)=cost
∫ √(1-x²) dx
=∫ cost d(sint)
=∫ cos²t dt
=∫ (cos2t+1)/2 dt
=(1/4) ∫ cos2t+1 d(2t)
=(1/4) (sin2t+2t)+C
=(1/2)*[x√(1-x²)+arcsinx]+C
导数与函数的性质:
单调性:
(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
根据微积分基本定理,对于可导的函数,有:
如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。
设x=sint,√(1-x²)=cost
∫ √(1-x²) dx
=∫ cost d(sint)
=∫ cos²t dt
=∫ (cos2t+1)/2 dt
=(1/4) ∫ cos2t+1 d(2t)
=(1/4) (sin2t+2t)+C
=(1/2)*[x√(1-x²)+arcsinx]+C
扩展资料:
已知函数f(x)是一个定义在某区间的函数,如果存在可导函数F(x),使得在该区间内的任一点都有dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。
函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。
原函数是:1/2倍x乘以根号下1-x的平方+1/2倍arcsinx+c(c为任意常数)
没看懂阿
1/2*x√(1-x^2)+1/2*arcsinx+C
f(x)=∫ √(1-x^2) dx
令x=sin t,则 sin2t=2x√(1-x^2) t=arcsin x
f(x)=∫ cost d sint
=∫ (cost)^2 dt
=∫ (cos2t+1)/2 dt
= 1/4*sin2t+t/2+C
=1/2*x√(1-x^2)+1/2*arcsinx+C